A Three-Component 1D/2D → 2D Interpenetrated Coordination Network: Structure and Gas Adsorption Studies
Jin-Xiang Chen A F , Ni-Ni Ding B , Ming Chen A , Wen-Hua Chen A , David J. Young B E , Wen-Hua Zhang B D F and T. S. Andy Hor B C FA School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
B Institute of Materials Research and Engineering (IMRE), A*STAR, 3 Research Link, 117602, Singapore.
C Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
D Current address: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
E Current address: School of Science, Monash University, 46150 Bandar Sunway, Selangor D. E. 47500, Malaysia.
F Corresponding authors. Email: jxchen@smu.edu.cn; zhangw@imre.a-star.edu.sg; andyhor@nus.edu.sg
Australian Journal of Chemistry 67(10) 1391-1395 https://doi.org/10.1071/CH14111
Submitted: 3 March 2014 Accepted: 24 April 2014 Published: 21 May 2014
Abstract
We herein report a Cd-based coordination polymer containing three integrated polymeric components: two neutral and entangled two-dimensional (6,3) nets and one zwitterionic one-dimensional polymer with corner-sharing double-stranded chains propagating along the c-direction to lock the consecutive ligand struts of the (6,3) nets. Despite a sophisticated entanglement, this coordination polymer is porous to selectively adsorb CO2.
References
[1] (a) S. R. Batten, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 1460.| Crossref | GoogleScholarGoogle Scholar |
(b) S. R. Batten, CrystEngComm 2001, 3, 67.
| Crossref | GoogleScholarGoogle Scholar |
(c) H.-L. Jiang, T. A. Makala, H.-C. Zhou, Coord. Chem. Rev. 2013, 257, 2232.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Wu, J. Yang, Z.-M. Su, S. R. Batten, J.-F. Ma, J. Am. Chem. Soc. 2011, 133, 11406.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y.-W. Li, L.-F. Wang, K.-H. He, Q. Chen, X.-H. Bu, Dalton Trans. 2011, 40, 10319.
| Crossref | GoogleScholarGoogle Scholar |
(f) S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. Mark Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710.
| Crossref | GoogleScholarGoogle Scholar |
(g) L. Ma, W. Lin, Angew. Chem. Int. Ed. 2009, 48, 3637.
| Crossref | GoogleScholarGoogle Scholar |
(h) S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O’Keeffe, O. M. Yaghi, J. Kim, Angew. Chem. Int. Ed. 2012, 51, 8791.
| Crossref | GoogleScholarGoogle Scholar |
(i) J. Duan, J. Bai, B. Zheng, Y. Li, W. Ren, Chem. Commun. 2011, 47, 2556.
| Crossref | GoogleScholarGoogle Scholar |
(j) R. Medishetty, L. L. Koh, G. K. Kole, J. J. Vittal, Angew. Chem. Int. Ed. 2011, 50, 10949.
| Crossref | GoogleScholarGoogle Scholar |
(k) V. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, CrystEngComm 2004, 6, 378.
| Crossref | GoogleScholarGoogle Scholar |
(l) L. Carlucci, G. Ciani, D. M. Proserpio, Coord. Chem. Rev. 2003, 246, 247.
| Crossref | GoogleScholarGoogle Scholar |
[2] J. Hafizovic, M. Bjørgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, C. Lamberti, K. P. Lillerud, J. Am. Chem. Soc. 2007, 129, 3612.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFeisr0%3D&md5=b57c17eebb2d13043d3fade55086002cCAS | 17341071PubMed |
[3] (a) J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2009, 131, 17040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKrsb%2FF&md5=91b7d3a46a60c5f578b0f27845289b4fCAS | 19891485PubMed |
(b) D. Rankine, A. Avellaneda, M. R. Hill, C. J. Doonan, C. J. Sumby, Chem. Commun. 2012, 48, 10328.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. K. Deshpande, G. I. N. Waterhouse, G. B. Jameson, S. G. Telfer, Chem. Commun. 2012, 48, 1574.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. K. Deshpande, J. L. Minnaar, S. G. Telfer, Angew. Chem. Int. Ed. 2010, 49, 4598.
| Crossref | GoogleScholarGoogle Scholar |
(e) O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, C. Woll, Nat. Mater. 2009, 8, 481.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) Y. He, Z. Zhang, S. Xiang, F. R. Fronczek, R. Krishna, B. Chen, Chem. Commun. 2012, 48, 6493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFyjtrw%3D&md5=b4bf827c12dea775e4e6d27b46a02987CAS |
(b) T. K. Maji, R. Matsuda, S. Kitagawa, Nat. Mater. 2007, 6, 142.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Bureekaew, H. Sato, R. Matsuda, Y. Kubota, R. Hirose, J. Kim, K. Kato, M. Takata, S. Kitagawa, Angew. Chem. Int. Ed. 2010, 49, 7660.
| Crossref | GoogleScholarGoogle Scholar |
(d) O. M. Yaghi, Nat. Mater. 2007, 6, 92.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin, Angew. Chem. Int. Ed. 2005, 44, 72.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. K. Kim, M. P. Suh, Chem. Commun. 2011, 47, 4258.
| Crossref | GoogleScholarGoogle Scholar |
(h) K. L. Mulfort, O. K. Farha, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, Chem. – Eur. J. 2010, 16, 276.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. Higuchi, D. Tanaka, S. Horike, H. Sakamoto, K. Nakamura, Y. Takashima, Y. Hijikata, N. Yanai, J. Kim, K. Kato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2009, 131, 10336.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot12gtb4%3D&md5=e980a0598fe4d27f14309dbc8bc1ceaeCAS | 19594120PubMed |
(b) P. Kanoo, R. Matsuda, H. Sato, L. Li, H. J. Jeon, S. Kitagawa, Inorg. Chem. 2013, 52, 10735.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Q.-X. Yao, W.-M. Xuan, H. Zhang, C.-Y. Tu, J. Zhang, Chem. Commun. 2009, 59.
| Crossref | GoogleScholarGoogle Scholar |
(b) Q.-X. Yao, Z.-F. Ju, X.-H. Jin, J. Zhang, Inorg. Chem. 2009, 48, 1266.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q.-X. Yao, Z.-F. Ju, W. Li, W. Wu, S.-T. Zheng, J. Zhang, CrystEngComm 2008, 10, 1299.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) X.-M. Zhang, Y.-Q. Wang, K. Wang, E.-Q. Gao, C.-M. Liu, Chem. Commun. 2011, 47, 1815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Whu7k%3D&md5=5edb668e83c1ecf4bc3f52ac9a441771CAS |
(b) Y. Ma, Y.-Q. Wen, J.-Y. Zhang, E.-Q. Gao, C.-M. Liu, Dalton Trans. 2010, 39, 1846.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) M. Chen, M.-Z. Chen, C.-Q. Zhou, W.-E. Lin, J.-X. Chen, W.-H. Chen, Z.-H. Jiang, Inorg. Chim. Acta 2013, 405, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktlyktLY%3D&md5=acdaf217bf15da444806d4525a49f0bfCAS |
(b) J.-X. Chen, W.-E. Lin, M.-Z. Chen, C.-Q. Zhou, Y.-L. Lin, M. Chen, Z.-H. Jiang, W.-H. Chen, Bioorg. Med. Chem. Lett. 2012, 22, 7056.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) J.-X. Chen, W.-E. Lin, M. Chen, F.-C. Que, L. Tao, X.-L. Cen, Y.-M. Zhou, W.-H. Chen, Inorg. Chim. Acta 2014, 409, 195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCjsL3K&md5=5ac1d6e8b0193e555cd01576fbd86f61CAS |
(b) J.-X. Chen, W.-E. Lin, C.-Q. Zhou, L. F. Yau, J.-R. Wang, B. Wang, W.-H. Chen, Z.-H. Jiang, Inorg. Chim. Acta 2011, 376, 389.
| Crossref | GoogleScholarGoogle Scholar |
[10] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsLzE&md5=40d2a1e897e5f9d56592d1e2f4d82476CAS | 22204561PubMed |
[11] (a) Y.-N. Gong, T.-B. Lu, Chem. Commun. 2013, 49, 7711.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1elsLbK&md5=6ae0b3583d70b3b6d849b0b9eaf1b5c2CAS |
(b) Y. Zeng, S. Liao, J. Dai, Z. Fu, Chem. Commun. 2012, 48, 11641.
| Crossref | GoogleScholarGoogle Scholar |
[12] C.-X. Ren, A.-L. Zheng, L.-X. Cai, C. Chen, B. Tan, J. Zhang, CrystEngComm 2014, 16, 1038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVOltw%3D%3D&md5=387fbcd77228e3aad78e979c68a32aaaCAS |
[13] A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlChtw%3D%3D&md5=a53e845eb7e543ed8f2b5515626d9a6cCAS |
[14] C. Janiak, Dalton Trans. 2000, 3885.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmtb0%3D&md5=4e117ef7be9a41c7ae40ad30cca39361CAS |
[15] D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, K. Kim, J. Am. Chem. Soc. 2004, 126, 32.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1yku7c%3D&md5=283c92b2e457b8228aa915ca5ac12587CAS | 14709045PubMed |
[16] L. Chen, J. P. S. Mowat, D. Fairen-Jimenez, C. A. Morrison, S. P. Thompson, P. A. Wright, T. Düren, J. Am. Chem. Soc. 2013, 135, 15763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslSqsbo%3D&md5=4f73b15c2f436889d8b236d2ed8e86e4CAS | 23731240PubMed |
[17] G. M. Sheldrick, SADABS. Program for Empirical Absorption Correction of Area Detector Data 1996 (University of Göttingen: Göttingen).
[18] G. M. Sheldrick, SHELXS-97 and SHELXL-97. Programs for Crystal Structure Solution and Refinement 1997 (University of Göttingen: Göttingen).