Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

The quantification of radical concentration in organic radical polymers: techniques and challenges

Theo A. Ellingsen https://orcid.org/0000-0002-1839-5392 A * , Stuart C. Thickett https://orcid.org/0000-0002-8168-3856 A and Rebecca O. Fuller https://orcid.org/0000-0003-3926-8680 A *
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences – Chemistry, University of Tasmania, Hobart, Tas., Australia.


Handling Editor: Curt Wentrup

Australian Journal of Chemistry 77, CH24085 https://doi.org/10.1071/CH24085
Submitted: 18 June 2024  Accepted: 5 August 2024  Published online: 12 September 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The development of new high-tech applications based on organic radical polymers has driven significant and renewed focus on these open shell macromolecules. The versatility in synthetic methods makes them highly accessible materials for a variety of researchers from different backgrounds. Although numerous overviews of the synthesis, structure and properties are available, the determination of radical concentration has been largely overlooked. This primer outlines the methods available and the non-trivial nature of the characterisation process. Although quantitative electron paramagnetic resonance and magnetometry are the gold standard for direct measurement of paramagnetism, there also exists a wide range of highly accessible complimentary methods for indirect measure such as ultraviolet–visible spectroscopy, elemental analysis and infrared spectroscopy.

Keywords: characterisation, energy storage, organic radical polymers, quantification, stable organic radicals.

References

Hayes. Griffith O, Keana JFW, Rottschaefer S, Warlick TA. Preparation and magnetic resonance of nitroxide polymers. J Am Chem Soc 1967; 89: 5072.
| Crossref | Google Scholar |

Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E. Rechargeable batteries with organic radical cathodes. Chem Phys Lett 2002; 359: 351-354.
| Crossref | Google Scholar |

Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Emerging N-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv Mater 2009; 21: 1627-1630.
| Crossref | Google Scholar |

Suga T, Sugita S, Ohshiro H, Oyaizu K, Nishide H. p- and n-Type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater 2011; 23: 751-754.
| Crossref | Google Scholar | PubMed |

Poizot P, Dolhem F, Gaubicher J. Progress in all-organic rechargeable batteries using cationic and anionic configurations: toward low-cost and greener storage solutions? Curr Opin Electrochem 2018; 9: 70-80.
| Crossref | Google Scholar |

Zhang K, Monteiro MJ, Jia Z. Stable organic radical polymers: synthesis and applications. Polym Chem 2016; 7: 5589-5614.
| Crossref | Google Scholar |

Tan Y, Hsu S-N, Tahir H, Dou L, Savoie BM, Boudouris BW. Electronic and spintronic open-shell macromolecules, quo vadis? J Am Chem Soc 2022; 144: 626-647.
| Crossref | Google Scholar | PubMed |

Bugnon L, Morton CJH, Novak P, Vetter J, Nesvadba P. Synthesis of poly(4-methacryloyloxy-TEMPO) via group-transfer polymerization and its evaluation in organic radical battery. Chem Mater 2007; 19: 2910-2914.
| Crossref | Google Scholar |

MacCorquodale F, Crayston JA, Walton JC, Worsfold DJ. Synthesis and electrochemical characterisation of poly(tempoacrylate). Tetrahedron Lett 1990; 31: 771-774.
| Crossref | Google Scholar |

10  Xue W, Mutlu H, Theato P. Post-polymerization modification of polymeric active esters towards TEMPO containing polymers: a systematic study. Eur Polym J 2020; 130: 109660.
| Crossref | Google Scholar |

11  Price JT, Paquette JA, Harrison CS, Bauld R, Fanchini G, Gilroy JB. 6-Oxoverdazyl radical polymers with tunable electrochemical properties. Polym, Chem 2014; 5: 5223-5226.
| Crossref | Google Scholar |

12  Paquette JA, Ezugwu S, Yadav V, Fanchini G, Gilroy JB. Synthesis, characterization, and thin-film properties of 6-oxoverdazyl polymers prepared by ring-opening metathesis polymerization. J Polym Sci – A. Polym Chem 2016; 54: 1803-1813.
| Crossref | Google Scholar |

13  Magnan F, Dhindsa JS, Anghel M, Bazylewski P, Fanchini G, Gilroy JB. A divergent strategy for the synthesis of redox-active verdazyl radical polymers. Polym Chem 2021; 12: 2786-2797.
| Crossref | Google Scholar |

14  Jähnert T, Häupler B, Janoschka T, Hager MD, Schubert US. Synthesis and charge–discharge studies of poly(ethynylphenyl)galvinoxyles and their use in organic radical batteries with aqueous electrolytes. Macromol Chem Phys 2013; 214: 2616-2623.
| Crossref | Google Scholar |

15  Shi Z, Wang J, Teraguchi M, Aoki T, Kaneko T. Helix-sense-selective polymerization of 3,5-bis(hydroxymethyl)phenylacetylene rigidly bearing galvinoxyl residues and their chiroptical properties. Polymers 2019; 11: 1877.
| Crossref | Google Scholar | PubMed |

16  Saal A, Friebe C, Schubert US. Polymeric Blatter’s radical via CuAAC and ROMP. Macromol Chem Phys 2021; 222: 2100194.
| Crossref | Google Scholar |

17  Saal A, Friebe C, Schubert US. Blatter radical as a polymeric active material in organic batteries. J Power Sources 2022; 524: 231061.
| Crossref | Google Scholar |

18  Liang Y, Chen Z, Jing Y, Rong Y, Facchetti A, Yao Y. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J Am Chem Soc 2015; 137: 4956-4959.
| Crossref | Google Scholar | PubMed |

19  Mukherjee S, Boudouris BW. Organic Radical Polymers: New Avenues in Organic Electronics. Cham, Switzerland: Springer International Publishing; 2017.

20  Hansen K-A, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018; 9: 1479-1516.
| Crossref | Google Scholar |

21  Ellingsen TA, Hoffmann N, Olivier WJ, Thickett SC, Silvester DS, Fuller RO. Stable organic radicals and their untapped potential in ionic liquids. Aust J Chem 2022; 75: 893-898.
| Crossref | Google Scholar |

22  Kurosaki T, Lee KW, Okawara M. Polymers having stable radicals. I. Synthesis of nitroxyl polymers from 4-methacryloyl derivatives of 2,2,6,6-tetramethylpiperidine. J Polym Sci A-1: Polym Chem 1972; 10: 3295-3310.
| Crossref | Google Scholar |

23  Bertrand O, Ernould B, Boujioui F, Vlad A, Gohy J-F. Synthesis of polymer precursors of electroactive materials by SET-LRP. Polym Chem 2015; 6: 6067-6072.
| Crossref | Google Scholar |

24  Fujii A, Ishida T, Koga N, Iwamura H. Syntheses and magnetic properties of poly(phenylacetylenes) carrying a (1-oxido-3-oxy-4,4,5,5-tetramethyl-2-imidazolin-2-yl) group at the meta or para position of the phenyl ring. Macromolecules 1991; 24: 1077-1082.
| Crossref | Google Scholar |

25  Suga T, Konishi H, Nishide H. Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem Commun 2007; 2007(17): 1730-1732.
| Crossref | Google Scholar | PubMed |

26  Janoschka T, Teichler A, Krieg A, Hager MD, Schubert US. Polymerization of free secondary amine bearing monomers by RAFT polymerization and other controlled radical techniques. J Polym Sci – A. Polym Chem 2012; 50: 1394-1407.
| Crossref | Google Scholar |

27  Daniel DT, Oevermann S, Mitra S, Rudolf K, Heuer A, Eichel R-A, Winter M, Diddens D, Brunklaus G, Granwehr J. Multimodal investigation of electronic transport in PTMA and its impact on organic radical battery performance. Sci Rep 2023; 13: 10934.
| Crossref | Google Scholar | PubMed |

28  Möser J, Lips K, Tseytlin M, Eaton GR, Eaton SS, Schnegg A. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude. J Magn Reson 2017; 281: 17-25.
| Crossref | Google Scholar | PubMed |

29  Weil JA, Bolton JR. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications. Hoboken, NJ, USA: Wiley–Interscience; 2007.

30  Burns DT, Flockhart BD. Application of quantitative EPR. Philos Trans A Math Phys Eng Sci 1990; 333: 37-48.
| Crossref | Google Scholar |

31  Nagy V. Quantitative EPR: some of the most difficult problems. Appl Magn Reson 1994; 6: 259-285.
| Crossref | Google Scholar |

32  Ingalls RB, Pearson GA. A basis for the determination of dissolved oxygen by electron spin resonance spectroscopy. Anal Chim Acta 1961; 25: 566-569.
| Crossref | Google Scholar |

33  Daniel DT, Mitra S, Eichel R-A, Diddens D, Granwehr J. Machine learning isotropic g values of radical polymers. J Chem Theory Comput 2024; 20: 2592-2604.
| Crossref | Google Scholar | PubMed |

34  Kulikov I, Vereshchagin AA, Lukianov DA, Levin OV, Behrends J. A nitroxide-containing cathode material for organic radical batteries studied with pulsed EPR spectroscopy. J Magn Reson Open 2023; 16–17: 100134.
| Crossref | Google Scholar |

35  Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M. Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 2004; 50: 827-831.
| Crossref | Google Scholar |

36  Qu J, Katsumata T, Satoh M, Wada J, Masuda T. Macromolecules 2007; 40: 3136-3144.
| Crossref |

37  Jobelius H, Wagner N, Schnakenburg G, Meyer A. Verdazyls as possible building blocks for multifunctional molecular materials: a case study on 1,5-diphenyl-3-(p-iodophenyl)-verdazyl focusing on magnetism, electron transfer and the applicability of the Sonogashira–Hagihara Reaction. Molecules 2018; 23: 1758.
| Crossref | Google Scholar | PubMed |

38  Mugiraneza S, Hallas AM. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie–Weiss law. Commun Phys 2022; 5: 95.
| Crossref | Google Scholar |

39  Cai H, Tang H, Wang T, Xu C, Xie J, Fu M, Luo X, Hu Z, Zhang Y, Deng Y, Li G, Liu C, Huang F, Cao Y. An n-type open-shell conjugated polymer with high-spin ground-state and high intrinsic electrical conductivity. Angew Chem Int Ed 2024; 63: e202402375.
| Crossref | Google Scholar |

40  Saunderson A. A permanent magnet Gouy balance. Phys Educ 1968; 3: 272-273.
| Crossref | Google Scholar |

41  Morris BL, Wold A. Faraday balance for measuring magnetic susceptibility. Rev Sci Instrum 1968; 39: 1937-1941.
| Crossref | Google Scholar |

42  Evans DF. 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J Chem Soc 1959; 59: 2003-2005.
| Crossref | Google Scholar | PubMed |

43  Aqil M, Aqil A, Ouhib F, El Idrissi A, Detrembleur C, Jérôme C. RAFT polymerization of an alkoxyamine bearing acrylate, towards a well-defined redox active polyacrylate. RSC Adv 2015; 5: 85035-85038.
| Crossref | Google Scholar |

44  Falbo E, Fusè M, Lazzari F, Mancini G, Barone V. Integration of quantum chemistry, statistical mechanics, and artificial intelligence for computational spectroscopy: the UV–Vis spectrum of TEMPO radical in different solvents. J Chem Theory Comput 2022; 18: 6203-6216.
| Crossref | Google Scholar | PubMed |

45  Zhang X, Huang S, Podgórski M, Han X, Claudino M, Bowman CN. Assessment of TEMPO as a thermally activatable base generator and its use in initiation of thermally-triggered thiol-Michael addition polymerizations. Polym Chem 2018; 9: 4294-4302.
| Crossref | Google Scholar | PubMed |

46  Endo T, Takuma K, Takata T, Hirose C. Synthesis and polymerization of 4-(glycidyloxy)-2,2,6,6-tetramethylpiperidine-1-oxyl. Macromolecules 1993; 26: 3227-3229.
| Crossref | Google Scholar |

47  Zhang X, Li H, Li L, Lu G, Zhang S, Gu L, Xia Y, Huang X. Polyallene with pendant nitroxyl radicals. Polymer 2008; 49: 3393-3398.
| Crossref | Google Scholar |

48  Nguyen TP, Easley AD, Kang N, Khan S, Lim S-M, Rezenom YH, Wang S, Tran DK, Fan J, Letteri RA, He X, Su L, Yu C-H, Lutkenhaus JL, Wooley KL. Polypeptide organic radical batteries. Nature 2021; 593: 61-66.
| Crossref | Google Scholar | PubMed |

49  Rial-Rodríguez E, Williams JD, Eggenweiler H-M, Fuchss T, Sommer A, Kappe CO, Cantillo D. Development of an open-source flow-through cyclic voltammetry cell for real-time inline reaction analytics. React Chem Eng 2024; 9: 26-30.
| Crossref | Google Scholar |

50  Eberhardt M, Mruk R, Zentel R, Théato P. Synthesis of pentafluorophenyl(meth)acrylate polymers: new precursor polymers for the synthesis of multifunctional materials. Eur Polym J 2005; 41: 1569-1575.
| Crossref | Google Scholar |

51  Gitzhofer E, Vileno B, Bouquey M, Chan-Seng D. Model reactions for the evaluation of poly- and multifunctional molecules as potential interfacial agents for the compatibilization of polyethylene/poly(ethylene-co-vinyl alcohol) blends. Polym Chem 2023; 14: 934-942.
| Crossref | Google Scholar |

52  Lin C-G, Hutin M, Busche C, Bell NL, Long D-L, Cronin L. Elucidating the paramagnetic interactions of an inorganic–organic hybrid radical-functionalized Mn-Anderson cluster. Dalton Trans 2021; 50: 2350-2353.
| Crossref | Google Scholar | PubMed |

53  Moffat KA, Hamer GK, Georges MK. Stable free radical polymerization process: kinetic and mechanistic study of the thermal decomposition of MB-TMP monitored by NMR and ESR spectroscopy. Macromolecules 1999; 32: 1004-1012.
| Crossref | Google Scholar |

54  Ostfeld D, Cohen IA. A cautionary note on the use of the Evans method for magnetic moments. J Chem Educ 1972; 49: 829.
| Crossref | Google Scholar |