Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Expanding on the plecstatin anticancer agent class: exchange of the chlorido ligand for N-heterocyclic ligands

Saawan Kumar A B , Mie Riisom A C , Stephen M. F. Jamieson C , Tilo Söhnel A , Suresh Bhargava D , Jing Sun E and Christian G. Hartinger https://orcid.org/0000-0001-9806-0893 A *
+ Author Affiliations
- Author Affiliations

A School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.

B School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.

C Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.

D Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Vic. 3000, Australia.

E State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.

* Correspondence to: c.hartinger@auckland.ac.nz

Handling Editor: Curt Wentrup

Australian Journal of Chemistry 77, CH24080 https://doi.org/10.1071/CH24080
Submitted: 6 June 2024  Accepted: 6 August 2024  Published online: 13 September 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Metal piano-stool complexes based on pyridinecarbothioamide (PCA) have shown promising antiproliferative and in vivo anticancer activity, in particular [Ru(cym)(p-F-PCA)Cl]PF6 (cym is η6-p-cymene; plecstatin-1). The impact of modifications of the PCA and π-bound ligands on biological properties has been extensively investigated. Herein, we explored the influence of exchanging the chlorido ligand with the N-heterocycles 1-methylimidazole, 1-methylbenzimidazole and pyridine. In solution, an equilibrium between the protonated and deprotonated forms of the thioamide bond was observed, which was found dictated by the solvent system with both species detected in polar solvents. [Ru(cym)(PCA)Cl]+ complexes exhibit unique behaviour in an aqueous environment where they rapidly form dimeric species after substitution of the chlorido ligand for the sulfur donor of the PCA ligand of a second complex molecule. This was also observed for the synthesised complexes with the N-heterocyclic ligands being cleaved from the Ru centre allowing for dimerisation, which may be reversed by acidification of the solution resulting in the formation of equivalent mononuclear compounds. This behaviour explains the similar biological properties of the complexes with respect to that of plecstatin-1.

Keywords: anticancer compounds, antiproliferative activity, bioinorganic chemistry, bioorganometallic chemistry, dimerisation, ligand exchange reactions, piano-stool compounds, plecstatin-1, pyridinecarbothioamide complexes, synthesis.

References

Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI. In vitro and in vivo activity and cross resistance profiles of novel ruthenium(II) organometallic arene complexes in human ovarian cancer. Br J Cancer 2002; 86: 1652-1657.
| Crossref | Google Scholar | PubMed |

Yan YK, Melchart M, Habtemariam A, Sadler PJ. Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. Chem Commun 2005; 2005(38): 4764-4776.
| Crossref | Google Scholar | PubMed |

Peacock AFA, Habtemariam A, Fernández R, Walland V, Fabbiani FPA, Parsons S, Aird RE, Jodrell DI, Sadler PJ. Tuning the reactivity of osmium(II) and ruthenium(II) arene complexes under physiological conditions. J Am Chem Soc 2006; 128: 1739-1748.
| Crossref | Google Scholar | PubMed |

Peacock AFA, Sadler PJ. Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. Chem Asian J 2008; 3: 1890-1899.
| Crossref | Google Scholar | PubMed |

Murray BS, Babak MV, Hartinger CG, Dyson PJ. The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 2016; 306: 86-114.
| Crossref | Google Scholar |

Morris RE, Aird RE, del Socorro Murdoch P, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ. Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 2001; 44: 3616-3621.
| Crossref | Google Scholar | PubMed |

Scolaro C, Bergamo A, Brescacin L, Delfino R, Cocchietto M, Laurenczy G, Geldbach TJ, Sava G, Dyson PJ. In vitro and in vivo evaluation of ruthenium(II)−arene PTA complexes. J Med Chem 2005; 48: 4161-4171.
| Crossref | Google Scholar | PubMed |

Chen H, Parkinson JA, Morris RE, Sadler PJ. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. J Am Chem Soc 2003; 125: 173-186.
| Crossref | Google Scholar | PubMed |

Wu B, Ong MS, Groessl M, Adhireksan Z, Hartinger CG, Dyson PJ, Davey CA. A ruthenium antimetastasis agent forms specific histone protein adducts in the nucleosome core. Chem Eur J 2011; 17: 3562-3566.
| Crossref | Google Scholar | PubMed |

10  Nazarov AA, Hartinger CG, Dyson PJ. Opening the lid on piano-stool complexes: An account of ruthenium(II)–arene complexes with medicinal applications. J Organomet Chem 2014; 751: 251-260.
| Crossref | Google Scholar |

11  Adhireksan Z, Davey GE, Campomanes P, Groessl M, Clavel CM, Yu H, Nazarov AA, Yeo CHF, Ang WH, Dröge P, Rothlisberger U, Dyson PJ, Davey CA. Ligand substitutions between ruthenium–cymene compounds can control protein versus DNA targeting and anticancer activity. Nat Commun 2014; 5: 3462.
| Crossref | Google Scholar | PubMed |

12  Nazarov AA, Meier SM, Zava O, Nosova YN, Milaeva ER, Hartinger CG, Dyson PJ. Protein ruthenation and DNA alkylation: chlorambucil-functionalized RAPTA complexes and their anticancer activity. Dalton Trans 2015; 44: 3614-3623.
| Crossref | Google Scholar | PubMed |

13  Artner C, Holtkamp HU, Kandioller W, Hartinger CG, Meier-Menches SM, Keppler BK. DNA or protein? Capillary zone electrophoresis–mass spectrometry rapidly elucidates metallodrug binding selectivity. Chem Commun 2017; 2017(57): 8002-8005.
| Crossref | Google Scholar | PubMed |

14  Artner C, Holtkamp HU, Hartinger CG, Meier-Menches SM. Characterizing activation mechanisms and binding preferences of ruthenium metallo-prodrugs by a competitive binding assay. J Inorg Biochem 2017; 177: 322-327.
| Crossref | Google Scholar | PubMed |

15  Kenny RG, Marmion CJ. Toward multi-targeted platinum and ruthenium drugs – a new paradigm in cancer drug treatment regimens? Chem Rev 2019; 119: 1058-1137.
| Crossref | Google Scholar | PubMed |

16  Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021; 439: 213890.
| Crossref | Google Scholar |

17  Tremlett WDJ, Goodman DM, Steel TR, Kumar S, Wieczorek-Błauż A, Walsh FP, Sullivan MP, Hanif M, Hartinger CG. Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021; 445: 213950.
| Crossref | Google Scholar |

18  Sumithaa C, Ganeshpandian M. Half-sandwich ruthenium arene complexes bearing clinically approved drugs as ligands: the importance of metal–drug synergism in metallodrug design. Mol Pharmaceutics 2023; 20: 1453-1479.
| Crossref | Google Scholar | PubMed |

19  Hartinger CG. A multifaceted approach towards organometallic anticancer agent development. J Organomet Chem 2024; 1012: 123144.
| Crossref | Google Scholar |

20  Kinney WA, Lee NE, Blank RM, Demerson CA, Sarnella CS, Scherer NT, Mir GN, Borella LE, Dijoseph JF, Wells C. N-Phenyl-2-pyridinecarbothioamides as gastric mucosal protectants. J Med Chem 1990; 33: 327-336.
| Crossref | Google Scholar | PubMed |

21  Arshad J, Hanif M, Movassaghi S, Kubanik M, Waseem A, Söhnel T, Jamieson SMF, Hartinger CG. Anticancer Ru(η6-p-cymene) complexes of 2-pyridinecarbothioamides: a structure–activity relationship study. J Inorg Biochem 2017; 177: 395-401.
| Crossref | Google Scholar | PubMed |

22  Meier SM, Hanif M, Adhireksan Z, Pichler V, Novak M, Jirkovsky E, Jakupec MA, Arion VB, Davey CA, Keppler BK, Hartinger CG. Novel metal(II) arene 2-pyridinecarbothioamides: a rationale to orally active organometallic anticancer agents. Chem Sci 2013; 4: 1837-1846.
| Crossref | Google Scholar |

23  Meier SM, Novak M, Kandioller W, Jakupec MA, Arion VB, Metzler-Nolte N, Keppler BK, Hartinger CG. Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chem Eur J 2013; 19: 9297-9307.
| Crossref | Google Scholar | PubMed |

24  Hanif M, Moon S, Sullivan MP, Movassaghi S, Kubanik M, Goldstone DC, Söhnel T, Jamieson SMF, Hartinger CG. Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand. J Inorg Biochem 2016; 165: 100-107.
| Crossref | Google Scholar | PubMed |

25  Arshad J, Hanif M, Zafar A, Movassaghi S, Tong KKH, Reynisson J, Kubanik M, Waseem A, Söhnel T, Jamieson SMF, Hartinger CG. Organoruthenium and organoosmium complexes of 2-pyridinecarbothioamides functionalized with a sulfonamide motif: synthesis, cytotoxicity and biomolecule interactions. ChemPlusChem 2018; 83: 612-619.
| Crossref | Google Scholar | PubMed |

26  Arshad J, Tong KKH, Movassaghi S, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Impact of the metal center and leaving group on the anticancer activity of organometallic complexes of pyridine-2-carbothioamide. Molecules 2021; 26: 833.
| Crossref | Google Scholar | PubMed |

27  Iqbal S, Siddiqui WA, Ashraf A, Tong KKH, Aman F, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Substitution of the chlorido ligand for PPh3 in anticancer organoruthenium complexes of sulfonamide-functionalized pyridine-2-carbothioamides leads to high cytotoxic activity. Inorg Chim Acta 2022; 536: 120889.
| Crossref | Google Scholar |

28  Riaz Z, Lee BYT, Stjärnhage J, Movassaghi S, Söhnel T, Jamieson SMF, Shaheen MA, Hanif M, Hartinger CG. Anticancer Ru and Os complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the labile chlorido ligand with phosphines. J Inorg Biochem 2023; 241: 112115.
| Crossref | Google Scholar | PubMed |

29  Meier SM, Kreutz D, Winter L, Klose MHM, Cseh K, Weiss T, Bileck A, Alte B, Mader JC, Jana S, Chatterjee A, Bhattacharyya A, Hejl M, Jakupec MA, Heffeter P, Berger W, Hartinger CG, Keppler BK, Wiche G, Gerner C. An organoruthenium anticancer agent shows unexpected target selectivity for plectin. Angew Chem Int Ed Engl 2017; 56: 8267-8271.
| Crossref | Google Scholar | PubMed |

30  Riisom M, Eade L, Tremlett WDJ, Hartinger CG. The aqueous stability and interactions of organoruthenium compounds with serum proteins, cell culture medium, and human serum. Metallomics 2022; 14: mfac043.
| Crossref | Google Scholar | PubMed |

31  Riisom M, Morrow SJ, Herbert CD, Tremlett WDJ, Astin JW, Jamieson SMF, Hartinger CG. In vitro and in vivo accumulation of the anticancer Ru complexes [RuII(cym)(HQ)Cl] and [RuII(cym)(PCA)Cl]Cl. J Biol Inorg Chem 2023; 28: 767-775.
| Crossref | Google Scholar | PubMed |

32  Steel TR, Hartinger CG. Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs. Metallomics 2020; 12: 1627-1636.
| Crossref | Google Scholar | PubMed |

33  Kumar S, Riisom M, Jamieson SMF, Kavianinia I, Harris PWR, Metzler-Nolte N, Brimble MA, Hartinger CG. On-resin conjugation of the ruthenium anticancer agent plecstatin-1 to peptide vectors. Inorg Chem 2023; 62: 14310-14317.
| Crossref | Google Scholar | PubMed |

34  Truong D, Lam NYS, Kamalov M, Riisom M, Jamieson SMF, Harris PWR, Brimble MA, Metzler-Nolte N, Hartinger CG. A solid support-based synthetic strategy for the site-selective functionalization of peptides with organometallic half-sandwich moieties. Chem Eur J 2022; 28: e202104049.
| Crossref | Google Scholar | PubMed |

35  Albada B, Metzler-Nolte N. Organometallic–peptide bioconjugates: synthetic strategies and medicinal applications. Chem Rev 2016; 116: 11797-11839.
| Crossref | Google Scholar | PubMed |

36  Pizarro AM, Habtemariam A, Sadler PJ. Activation mechanisms for organometallic anticancer complexes. In: Jaouen G, Metzler-Nolte N, editors. Medicinal Organometallic Chemistry. Springer; 2010. pp. 21–56.

37  Parveen S, Hanif M, Movassaghi S, Sullivan MP, Kubanik M, Shaheen MA, Söhnel T, Jamieson SMF, Hartinger CG. Cationic Ru(η6-p-cymene) complexes of 3-hydroxy-4-pyr(id)ones – lipophilic triphenylphosphine as co-ligand is key to highly stable and cytotoxic anticancer agents. Eur J Inorg Chem 2017; 2017: 1721-1727.
| Crossref | Google Scholar |

38  Tremlett W, Tong K, Steel TR, Movassaghi S, Hanif M, Jamieson S, Söhnel T, Hartinger CG. Hydroxyquinoline-derived anticancer organometallics: introduction of amphiphilic PTA as an ancillary ligand increases their aqueous solubility. J Inorg Biochem 2019; 199: 110768.
| Crossref | Google Scholar | PubMed |

39  Baird IR, Rettig SJ, James BR, Skov KA. Synthesis and characterization of homoleptic ruthenium(II) imidazole complexes, and a carbonyl species derived by CO abstraction from DMF. Can J Chem 1998; 76: 1379-1388.
| Crossref | Google Scholar |

40  Matveevskaya VV, Pavlov DI, Samsonenko DG, Ermakova EA, Klyushova LS, Baykov SV, Boyarskiy VP, Potapov AS. Synthesis and structural characterization of half-sandwich arene–ruthenium(II) complexes with bis(imidazol-1-yl)methane, imidazole and benzimidazole. Inorganics 2021; 9: 34.
| Crossref | Google Scholar |

41  Teng Q, Huynh HV. A unified ligand electronic parameter based on 13C NMR spectroscopy of N-heterocyclic carbene complexes. Dalton Trans 2017; 46: 614-627.
| Crossref | Google Scholar | PubMed |