Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor

Madyan A. Yaseen A , Saira Mumtaz A , Richard L. Hunter A , Daniel Wall A , Mark J. Robertson A and Michael Oelgemöller https://orcid.org/0000-0003-3541-6770 A B C
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium.

C Corresponding author. Email: michael.oelgemoeller@jcu.edu.au

Australian Journal of Chemistry 73(12) 1149-1157 https://doi.org/10.1071/CH20138
Submitted: 28 April 2020  Accepted: 15 June 2020   Published: 7 July 2020

Abstract

A series of photochemical transformations has been successfully conducted under continuous-flow conditions in a concentrating solar trough reactor. Photoacylations and [2+2]-photocycloadditions involving 1,4-naphthoquinones gave the corresponding photoproducts in moderate to high yields with residence times of 70 min. Likewise, acetone-sensitized photodecarboxylations involving phthalimides furnished the corresponding benzylated hydroxy phthalimidines in good to excellent yields and purity with residence times of 40 min. Compared with corresponding exposures to direct sunlight conducted in a solar float, flow operation generally gave superior conversions and subsequent yields.


References

[1]  V. Balzani, G. Bergamini, P. Ceroni, Rend. Fis. Acc. Lincei 2017, 28, 125.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  M. D. Kärkäs, J. A. Porco, C. R. J. Stephenson, Chem. Rev. 2016, 116, 9683.
         | Crossref | GoogleScholarGoogle Scholar | 27120289PubMed |

[3]  M. Oelgemöller, N. Hoffmann, Org. Biomol. Chem. 2016, 14, 7392.
         | Crossref | GoogleScholarGoogle Scholar | 27381273PubMed |

[4]  F. Politano, G. Oksdath-Mansilla, Org. Process Res. Dev. 2018, 22, 1045.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  K. Mizuno, Y. Nishiyama, T. Ogaki, K. Terao, H. Ikeda, K. Kakiuchi, J. Photochem. Photobiol. Photochem. Rev. 2016, 29, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  M. Oelgemöller, N. Hoffmann, O. Shvydkiv, Aust. J. Chem. 2014, 67, 337.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  A. M. Braun, C. A. Oller do Nascimento, Nachr. Chem. Tech. Lab. 1991, 39, 515.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  A. Albini, V. Dichiarante, Photochem. Photobiol. Sci. 2009, 8, 248.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. D. Roth, Angew. Chem. Int. Ed. Engl. 1989, 28, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. Oelgemöller, Chem. Rev. 2016, 116, 9664.
         | Crossref | GoogleScholarGoogle Scholar | 27181285PubMed |

[11]  P. Esser, B. Pohlmann, H.-D. Scharf, Angew. Chem. Int. Ed. Engl. 1994, 33, 2009.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Oelgemöller, C. Jung, J. Mattay, Pure Appl. Chem. 2007, 79, 1939.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  C. Y. Park, Y. J. Kim, H. J. Lim, J. H. Park, M. J. Kim, S. W. Seo, C. P. Park, RSC Adv. 2015, 5, 4233.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. J. Kim, M. J. Jeong, J. E. Kim, I. In, C. P. Park, Aust. J. Chem. 2015, 68, 1653.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  A. M. Braun, M. Maurette, E. Oliveros, Photochemical Technology 1991 (Wiley: Chichester).

[16]  G. E. Batley, Anal. Chem. 1984, 56, 2261.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. P. Zhao, R. O. Campbell, R. S. H. Liu, Green Chem. 2008, 10, 1038.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  N. C. de Lucas, A. B. B. Ferreira, J. C. Netto-Ferreira, Rev. Virtual Quim. 2015, 7, 403.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  K. Maruyama, A. Osuka, in The Chemistry of Quinonoid Compounds (Eds S. Patai, Z. Rappaport) 1988, Vol 2, Part 1, Ch. 13, pp. 759–878 (John Wiley & Sons Ltd: New York, NY).

[20]  H. Klinger, Justus Liebigs Ann. Chem. 1888, 249, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Oelgemöller, J. Mattay, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn (Eds W. M. Horspool, F. Lenci) 2004, Vol. 2, Ch. 88, pp. 1–45 (CRC Press, Taylor & Francis Group: Boca Raton, FL).

[22]  G. A. Kraus, M. Kirihara, J. Org. Chem. 1992, 57, 3256.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Maruyama, Y. Miyagi, Bull. Chem. Soc. Jpn. 1974, 47, 1303.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. Oelgemöller, C. Schiel, J. Mattay, R. Fröhlich, Eur. J. Org. Chem. 2002, 2465.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  Y. Chen, J. C. Sabio, R. L. Hartman, J. Flow Chem. 2015, 5, 166.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  F. Friedrichs, B. Murphy, D. Nayrat, T. Ahner, M. Funke, M. Ryan, J. Lex, J. Mattay, M. Oelgemöller, Synlett 2008, 3137.

[27]  G. A. Kraus, P. Liu, Tetrahedron Lett. 1994, 35, 7723.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  L. J. Mitchell, W. Lewis, C. J. Moody, Green Chem. 2013, 15, 2830.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. Murphy, P. Goodrich, C. Hardacre, M. Oelgemöller, Green Chem. 2009, 11, 1867.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  R. Pacut, M. L. Grimm, G. A. Kraus, J. M. Tanko, Tetrahedron Lett. 2001, 42, 1415.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  J. Benites, M. Cortes, L. Miranda, C. Estela, D. Rios, J. Arenas, J. A. Valderrama, J. Chil. Chem. Soc. 2014, 59, 2455.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  F. De Leon, S. Kalagara, A. A. Navarro, S. Mito, Tetrahedron Lett. 2013, 54, 3147.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  C. Schiel, M. Oelgemöller, J. Ortner, J. Mattay, Green Chem. 2001, 3, 224.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. Montalti, A. Credi, L. Prodi, M. T. Gandolfi, Handbook of Photochemistry, 3rd edn 2006 (CRC Press, Taylor & Francis Group: Boca Raton, FL).

[35]  N. J. Bunce, J. E. Ridley, M. C. Zerner, Theor. Chim. Acta 1977, 45, 283.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  R. R. Hill, G. H. Mitchell, J. Chem. Soc. B 1969, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J. Dekker, P. J. van Vuuren, D. P. Venter, J. Org. Chem. 1968, 33, 464.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. Castañeda, C. Iuga, J. R. Álvarez-Idaboy, A. Vivier-Bunge, J. Mex. Chem. Soc. 2012, 56, 316.

[39]  A. Gilbert, in CRC Handbook of Organic Photochemistry and Photobiology, 2nd edn (Eds W. M. Horspool, F. Lenci) 2004, Vol. 2, Ch. 87, pp. 1–12 (CRC Press, Taylor & Francis Group: Boca Raton, FL).

[40]  D. Creed, in CRC Handbook of Organic Photochemistry and Photobiology (Eds W. M. Horspool, P.-S. Song) 1995, Ch. 59, pp. 737–747 (CRC Press, Taylor & Francis Group: Boca Raton, FL).

[41]  C. Covell, A. Gilbert, C. Richter, J. Chem. Res. (S) 1998, 316.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  D. Bryce-Smith, E. H. Evans, A. Gilbert, H. S. McNeill, J. Chem. Soc., Perkin Trans. 1 1992, 485.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  K. Maruyama, Y. Naruta, T. Otsuki, Bull. Chem. Soc. Jpn. 1975, 48, 1553.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  K. Maruyama, T. Otsuki, A. Tukuwa, S. Kako, Bull. Inst. Chem. Res. Kyoto Univ. 1972, 50, 344.

[45]  S. Cleridou, C. Covell, A. Gadhia, A. Gilbert, P. Kamonnawin, J. Chem. Soc., Perkin Trans. 1 2000, 1149.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  F. Hatoum, J. Engler, C. Zelmer, J. Wißen, C. A. Motti, J. Lex, M. Oelgemöller, Tetrahedron Lett. 2012, 53, 5573.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  A. G. Griesbeck, W. Kramer, M. Oelgemöller, Green Chem. 1999, 1, 205.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  O. Shvydkiv, K. Nolan, M. Oelgemöller, Beilstein J. Org. Chem. 2011, 7, 1055.
         | Crossref | GoogleScholarGoogle Scholar | 21915208PubMed |

[49]  O. Shvydkiv, S. Gallagher, K. Nolan, M. Oelgemöller, Org. Lett. 2010, 12, 5170.
         | Crossref | GoogleScholarGoogle Scholar | 20945889PubMed |

[50]  V. Wintgens, P. Valat, J. Kossanyi, L. Biczok, A. Demeter, T. Bérces, J. Chem. Soc., Faraday Trans. 1994, 90, 411.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  H. Görner, M. Oelgemöller, A. G. Griesbeck, J. Phys. Chem. A 2002, 106, 1458.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  H. Görner, A. G. Griesbeck, T. Heinrich, W. Kramer, M. Oelgemöller, Chem. – Eur. J. 2001, 7, 1530.
         | Crossref | GoogleScholarGoogle Scholar | 11330909PubMed |

[53]  A. G. Griesbeck, T. Heinrich, M. Oelgemöller, A. Molis, A. Heidtmann, Helv. Chim. Acta 2002, 85, 4561.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  M. Oelgemöller, P. Cygon, J. Lex, A. G. Griesbeck, Heterocycles 2003, 59, 669.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  T. Bousquet, J.-F. Fleury, A. Daïch, P. Netchitaïlo, Tetrahedron 2006, 62, 706.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  S. Mumtaz, M. J. Robertson, M. Oelgemöller, Molecules 2019, 24, 4527.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  O. Anamimoghadam, S. Mumtaz, A. Nietsch, G. Saya, C. A. Motti, J. Wang, P. C. Junk, A. M. Qureshi, M. Oelgemöller, Beilstein J. Org. Chem. 2017, 13, 2833.
         | Crossref | GoogleScholarGoogle Scholar | 29564011PubMed |

[58]  P. Kováts, D. Pohl, D. Thévenin, K. Zähringer, Chem. Eng. Sci. 2018, 190, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  P. E. da Silva Júnior, H. I. M. Amin, A. M. Nauth, F. da Silva Emery, S. Protti, T. Opatz, ChemPhotoChem 2018, 2, 878.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  A. M. Nauth, A. Lipp, B. Lipp, T. Opatz, Eur. J. Org. Chem. 2017, 2099.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  Y. Yoshimi, A. Nishio, M. Hayashi, T. Morita, J. Photochem. Photobiol. Chem. 2016, 331, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  M. Oelgemöller, J. Chin. Chem. Soc. 2014, 61, 743.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  N. Hoffmann, ChemSusChem 2012, 5, 352.
         | Crossref | GoogleScholarGoogle Scholar | 22287209PubMed |

[64]  M. Oelgemöller, T. Goodine, P. Malakar, in Sustainable Flow Chemistry – Methods and Applications (Ed. L. Vaccaro) 2017, Ch. 1, pp. 1–24 (Wiley-VCH: Weinheim).

[65]  D. A. Pedroza, F. De Leon, A. Varela-Ramirez, C. Lema, R. J. Aguilera, S. Mito, Bioorg. Med. Chem. 2014, 22, 842.
         | Crossref | GoogleScholarGoogle Scholar | 24368029PubMed |

[66]  V. Belluau, P. Noeureuil, E. Ratzke, A. Skvortsov, S. Gallagher, C. A. Motti, M. Oelgemöller, Tetrahedron Lett. 2010, 51, 4738.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  C. Schiel, M. Oelgemöller, J. Mattay, Synthesis 2001, 1275.

[68]  T. Otsuki, Bull. Chem. Soc. Jpn. 1976, 49, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[69]  K. Heidenbluth, H. Tönjes, R. Scheffler, J. Prakt. Chem. 1965, 30, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[70]  A. M. S. El-Sharief, S. A. El-Sharabasy, A. A. Hassanin, Egypt. J. Chem. 1982, 24, 435.