Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Air and Moisture Tolerant Synthesis of a Chelated bis(NHC) Methylpalladium(ii) Complex Relevant to Alkyl Migration Processes in Catalysis

Michael G. Gardiner A , Curtis C. Ho https://orcid.org/0000-0002-7555-0635 A B , David S. McGuinness A and Yi Ling Liu A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences – Chemistry, Private Bag 75, University of Tasmania, Hobart, Tas. 7001, Australia.

B Corresponding author. Email: Curtis.Ho@utas.edu.au

Australian Journal of Chemistry 73(12) 1158-1164 https://doi.org/10.1071/CH20194
Submitted: 12 June 2020  Accepted: 1 July 2020   Published: 28 July 2020

Abstract

An air- and moisture-tolerant alternate synthetic pathway to the preparation of a cationic chelated bis(NHC) methylpalladium(ii) complex, [{(MesIm)2CH2}Pd(Me)(NCMe)][PF6], is described. The pathway involves the isolation of a bis(NHC) AgI complex, [{(MesIm)2CH2}2Ag2][PF6]2, via metallation of the corresponding diimidazolium salt with Ag2O followed by carbene transfer to [(COD)PdBrMe]. This new method avoids a previously reported unstable intermediate that displayed rapid decomposition at room temperature, attaining the targeted cationic methylpalladium(ii) complex in high yield. CO/ethylene copolymerisation catalysis trials are reported showing solvent dependent catalyst lifetime and copolymer yields. Preliminary ethylene insertion studies are also outlined revealing possible pathways leading towards catalyst deactivation.


References

[1]  See Chapter 22 in: Organotransition Metal Chemistry From Bonding to Catalysis (Ed. J. F. Hartwig) 2010 (University Science Books: Sausalito, CA).

[2]  See Chapter 12 in: The Organometallic Chemistry of the Transition Metals (Ed. R. H. Crabtree) 2014 (John Wiley & Sons, Inc.: Hoboken, NJ).

[3]  L. Guo, W. Liu, C. Chen, Mater. Chem. Front. 2017, 1, 2487.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  J. P. Collins, Acc. Chem. Res. 1968, 1, 138.

[5]  L. K. Johnson, S. Mecking, M. Brookhart, J. Am. Chem. Soc. 1996, 118, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. S. McGuinness, K. J. Cavell, Organometallics 2000, 19, 4918.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) F. C. Rix, M. Brookhart, P. S. White, J. Am. Chem. Soc. 1996, 118, 4746.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) H. Xu, C. T. Hu, X. Wang, T. Diao, Organometallics 2017, 36, 4099.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  D. Bézier, O. Daugulis, M. Brookhart, Organometallics 2017, 36, 443.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) R. E. Black, R. F. Jordan, Organometallics 2017, 36, 3415.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) X. Sui, S. Dai, C. Chen, ACS Catal. 2015, 5, 5932.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) D. Bézier, O. Daugulis, M. Brookhart, Organometallics 2017, 36, 2947.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Z. Guan, W. J. Marshall, Organometallics 2002, 21, 3580.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Ortiz de la Tabla, I. Matas, P. Palma, E. Álvarez, J. Cámpora, Organometallics 2012, 31, 1006.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. W. Waltman, R. H. Grubbs, Organometallics 2004, 23, 3105.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) M. G. Gardiner, W. A. Herrmann, C.-P. Reisinger, J. Schwarz, M. Spiegler, J. Organomet. Chem. 1999, 572, 239.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) F. E. Hahn, M. Foth, J. Organomet. Chem. 1999, 585, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  (a) R. E. Douthwaite, M. L. H. Green, P. J. Silcock, P. T. Gomes, J. Chem. Soc., Dalton Trans. 2002, 1386.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. E. Douthwaite, M. L. H. Green, P. J. Silcock, P. T. Gomes, Organometallics 2001, 20, 2611.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. G. Gardiner, C. C. Ho, Coord. Chem. Rev. 2018, 375, 373.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. S. Subramanium, L. M. Slaughter, Dalton Trans. 2009, 6930.
         | Crossref | GoogleScholarGoogle Scholar | 20449132PubMed |

[16]  K. M. Lee, H. M. J. Wang, I. J. B. Lin, Dalton Trans. 2002, 2852.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  Y. A. Wanniarachchi, M. A. Khan, L. M. Slaughter, Organometallics 2004, 23, 5881.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  D. Meyer, T. Strassner, J. Organomet. Chem. 2015, 784, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Note: Yields are lower when compared to those reported by Herrmann and co-workers despite replicating reaction conditions, presumably due to differences in gas quality and reactor setup. For CO/ethylene copolymer yields of related complexes in our hands see: M. G. Gardiner, C. C. Ho, F. M. Mackay, D. S. McGuinness, M. Tucker, Dalton Trans. 2013, 42, 7447.
         | Crossref | GoogleScholarGoogle Scholar | 23459696PubMed |

[20]  A. Milet, A. Dedieu, G. M. Kapteijn, G. van Koten, Inorg. Chem. 1997, 36, 3223.
         | Crossref | GoogleScholarGoogle Scholar | 11669984PubMed |

[21]  J. Chatt, B. L. Shaw, J. Chem. Soc. 1962, 5075.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  G. M. Kapteijn, A. Dervisi, D. M. Grove, H. Kooijman, M. T. Lakin, A. L. Spek, G. van Koten, J. Am. Chem. Soc. 1995, 117, 10939.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) P. D. W. Boyd, A. J. Edwards, M. G. Gardiner, C. C. Ho, M. H. Lemee-Cailleau, D. S. McGuinness, A. Rianpanitra, J. W. Steed, D. N. Stringer, B. F. Yates, Angew. Chem. Int. Ed. Engl. 2010, 49, 6315.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. R. Vanston, G. J. Kearley, A. J. Edwards, T. A. Darwish, N. R. de Souza, A. J. Ramirez-Cuesta, M. G. Gardiner, Faraday Discuss. 2015, 177, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  F. C. Rix, M. Brookhart, J. Am. Chem. Soc. 1995, 117, 1137.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  C. T. Burns, R. F. Jordan, Organometallics 2007, 26, 6726.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  R. E. Rulke, J. M. Ernsting, A. L. Spek, C. J. Elseier, P. W. N. M. van Leeuwen, K Vrieze, Inorg. Chem. 1993, 32, 5769.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizakerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
         | Crossref | GoogleScholarGoogle Scholar | 12409628PubMed |

[28]  G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.

[29]  (a) L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |