Synthesis and Characterisation of Two Lithium Tetramethylberyllate Salts and a Series of β-Diketiminato Beryllium Alkyl Complexes*
Albert Paparo A B , Caspar N. de Bruin-Dickason A and Cameron Jones A BA School of Chemistry, PO Box 23, Monash University, Melbourne, Vic. 3800, Australia.
B Corresponding authors. Email: albertpaparo@protonmail.com; cameron.jones@monash.edu
Australian Journal of Chemistry 73(12) 1144-1148 https://doi.org/10.1071/CH20129
Submitted: 23 April 2020 Accepted: 21 May 2020 Published: 19 June 2020
Abstract
A safer route than that previously published for the synthesis of [BeI2(OEt2)2] has been developed. Reactions of beryllium dihalide complexes [BeX2(OEt2)2] (X = Br or I) with either LiMe or LiBun lead to mixtures of products, which have been shown to act as sources of ‘BeR2’ (R = Me or Bun) in previous synthetic studies. Here, a titration method has been developed to determine the quantity of metal alkyl residues in these ‘BeR2’ mixtures that are available for subsequent alkane elimination reactions. Treating ‘BeMe2’ mixtures with N,N,N′,N′-tetramethylethylenediamine (tmeda) gave two lithium tetramethylberyllate compounds, [{(tmeda)Li}2(μ-BeMe4)] and [{[(tmeda)Li](BeMe4)(μ-Li)}∞], which were crystallographically characterised. Treatment of in situ-generated ‘BeR2’ solutions with several β-diketimines (HC{C(Me)=NR}{=C(Me)N(H)R}, NacnacH, R = aryl or alkyl) yielded a series of β-diketiminato beryllium alkyl complexes, [(Nacnac)BeR], including the first chiral example of such a compound. Crystallographic studies of these reveal them to be monomeric, with planar three-coordinate beryllium centres.
References
[1] D. Naglav, M. R. Buchner, G. Bendt, F. Kraus, S. Schulz, Angew. Chem. Int. Ed. 2016, 55, 10562.| Crossref | GoogleScholarGoogle Scholar |
[2] Review: M. R. Buchner, Chem. – Eur. J. 2019, 25, 12018.
| Crossref | GoogleScholarGoogle Scholar | 31162743PubMed |
[3] (a) See for example: M. R. Buchner, M. Müller, F. Dankert, K. Reuter, C. von Hänisch, Dalton Trans. 2018, 16393.
| Crossref | GoogleScholarGoogle Scholar | 30328861PubMed |
(b) B. Scheibe, M. R. Buchner, Eur. J. Inorg. Chem. 2018, 2300.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Müller, M. R. Buchner, Angew. Chem. Int. Ed. 2018, 57, 9180.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. R. Buchner, M. Müller, S. S. Rudel, Angew. Chem. Int. Ed. 2017, 56, 1130.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Naglav, B. Tobey, B. Lyhs, B. Römer, D. Bläser, C. Wölper, G. Jansen, S. Schulz, Angew. Chem. Int. Ed. 2017, 56, 8559.
| Crossref | GoogleScholarGoogle Scholar |
(f) K. Dehnicke, B. Neumüller, Z. Anorg. Allg. Chem. 2008, 634, 2703.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Schmidbaur, Coord. Chem. Rev. 2001, 215, 223.
| Crossref | GoogleScholarGoogle Scholar |
(h) A. Budimir, M. Walther, R. Putchta, R. van Eldik, Z. Anorg. Allg. Chem. 2011, 637, 515.
| Crossref | GoogleScholarGoogle Scholar |
(i) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Dalton Trans. 2013, 11035.
| Crossref | GoogleScholarGoogle Scholar |
(j) K. J. Iversen, S. A. Couchman, D. J. D. Wilson, J. L. Dutton, Coord. Chem. Rev. 2015, 297–298, 40.
| Crossref | GoogleScholarGoogle Scholar |
(k) L. A. Freeman, J. E. Walley, A. E. Obi, G. Wang, D. A. Dickie, A. Molino, D. J. D. Wilson, R. J. Gilliard, Inorg. Chem. 2019, 58, 10554.
| Crossref | GoogleScholarGoogle Scholar |
(l) M. Müller, M. R. Buchner, Chem. – Eur. J. 2020,
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) See for example: M. Arrowsmith, H. Braunschweig, M. A. Celik, T. Dellermann, R. D. Dewhurst, W. C. Ewing, K. Hammond, T. Kramer, I. Krummenacher, J. Mies, K. Radacki, J. K. Schuster, Nat. Chem. 2016, 8, 890.
| Crossref | GoogleScholarGoogle Scholar |
(b) G. Wang, L. A. Freeman, D. A. Dickie, R. Mokrai, Z. Benko, R. J. Gilliard, Chem. – Eur. J. 2019, 25, 4335.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Wang, J. E. Walley, D. A. Dickie, S. Pan, G. Frenking, R. J. Gilliard, J. Am. Chem. Soc. 2020, 142, 4560.
| Crossref | GoogleScholarGoogle Scholar |
[5] G. E. Coates, G. L. Morgan, Adv. Organomet. Chem. 1971, 9, 195.
| Crossref | GoogleScholarGoogle Scholar |
[6] As determined from a survey of the Cambridge Crystallographic Database, April, 2020.
[7] A. I. Snow, R. E. Rundle, Acta Crystallogr. 1951, 4, 348.
| Crossref | GoogleScholarGoogle Scholar |
[8] Alkaline-Earth Metal Compounds: Oddities and Applications (Ed. S. Harder) 2013 (Springer: Heidelberg).
[9] J. Emsley, The Elements 1995 (Clarendon: Oxford).
[10] P. Pyykkö, M. Atsumi, Chem. – Eur. J. 2008, 15, 186.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) A. Paparo, C. Jones, Chem. Asian J. 2019, 14, 486.
| Crossref | GoogleScholarGoogle Scholar | 30604490PubMed |
(b) A. Paparo, S. P. Best, K. Yuvaraj, C. Jones, Organometallics 2020,
| Crossref | GoogleScholarGoogle Scholar |
(c) S. J. Bonyhady, C. Jones, S. Nembenna, A. Stasch, A. J. Edwards, G. J. McIntyre, Chem. – Eur. J. 2010, 16, 938.
| Crossref | GoogleScholarGoogle Scholar |
[12] A. Paparo, C. D. Smith, C. Jones, Angew. Chem. Int. Ed. 2019, 58, 11459.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) For magnesium hydride analogues derived from magnesium alkyls, see: M. Arrowsmith, B. Maitland, G. Kociok-Kohn, A. Stasch, C. Jones, M. S. Hill, Inorg. Chem. 2014, 53, 10543.
| Crossref | GoogleScholarGoogle Scholar | 25203490PubMed |
(b) R. Lalrempuia, C. E. Kefalidis, S. J. Bonyhady, B. Schwarze, L. Maron, A. Stasch, C. Jones, J. Am. Chem. Soc. 2015, 137, 8944.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. X. Gentner, B. Rosch, G. Ballmann, J. Langer, H. Elsen, S. Harder, Angew. Chem. Int. Ed. 2019, 58, 607.
| Crossref | GoogleScholarGoogle Scholar |
[14] For a calcium hydride analogue derived from a calcium alkyl, see: A. S. S. Wilson, M. S. Hill, M. F. Mahon, C. Dinoi, L. Maron, Science 2017, 358, 1168.
| Crossref | GoogleScholarGoogle Scholar |
[15] For a strontium hydride analogue derived from a strontium alkyl, see: B. Rosch, T. X. Gentner, H. Elsen, C. A. Fischer, J. Langer, M. Wiesinger, S. Harder, Angew. Chem. Int. Ed. 2019, 58, 5396.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. Jones, A. Stasch, Anal. Sci.: X-Ray Struct. Anal. Online 2007, 23, x115.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Braunschweig, K. Gruss, Z. Naturforsch. B: Chem. Sci. 2011, 66, 55.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Han, G. Parkin, Inorg. Chem. 1992, 31, 983.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) D. F. Gaines, K. M. Coleson, D. F. Hillenbrand, J. Magn. Reson. 1981, 44, 84.
| Crossref | GoogleScholarGoogle Scholar |
(b) P. G. Plieger, K. D. John, T. S. Keizer, T. M. McCleskey, A. K. Burrell, R. L. Martin, J. Am. Chem. Soc. 2004, 126, 14651.
| Crossref | GoogleScholarGoogle Scholar |
[20] E. Weiss, R. Wolfrum, J. Organomet. Chem. 1968, 12, 257.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Krasovskiy, P. Knochel, Synthesis 2006, 890.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) M. S. Hill, D. J. Liptrot, C. Weetman, Chem. Soc. Rev. 2016, 45, 972.
| Crossref | GoogleScholarGoogle Scholar | 26797470PubMed |
(b) M. R. Crimmin, M. S. Hill, in Alkaline-Earth Metal Compounds (Ed. S. Harder) 2013, Topics in Organometallic Chemistry, Vol. 45, pp. 191–241 (Springer: Berlin).
[23] (a) M. Arrowsmith, M. S. Hill, G. Kociak-Köhn, D. J. MacDougall, M. F. Mahon, I. Mallov, Inorg. Chem. 2012, 51, 13408.
| Crossref | GoogleScholarGoogle Scholar | 23215345PubMed |
(b) M. Bayram, D. Naglav, C. Wölper, S. Schulz, Organometallics 2017, 36, 467.
| Crossref | GoogleScholarGoogle Scholar |
[24] Z. Xu, S. Zhang, W. Ren, Inorg. Chim. Acta 2019, 495, 118970.
| Crossref | GoogleScholarGoogle Scholar |