Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Porous CoII-MOF for CO2 Cycloaddition and the Protective Effect against Staphylococcus aureus Systemic Infection in the Department of Ultrasound

Jin Cai A and Peng-Fei Zou https://orcid.org/0000-0003-2322-0711 B C
+ Author Affiliations
- Author Affiliations

A Department of Ultrasound, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, China.

B Department of Infectious Diseases, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang 310000, China.

C Corresponding author. Email: pengfei_zou666@sina.com

Australian Journal of Chemistry 74(2) 94-100 https://doi.org/10.1071/CH20060
Submitted: 22 February 2020  Accepted: 8 April 2020   Published: 22 June 2020

Abstract

A new metal-organic framework (MOF) based on CoII ions as nodes, [Co2(H2O)3(cada)](DMF)4, which has coordinated water molecules at the occupied CoII sites along with a suitable pore environment, was constructed by reaction of 5,5′-(9H-carbazole-2,7-diyl)diisophthalic acid (H4cada) and Co(NO3)2·6H2O in a water and DMF mixed solvent. The resulting activated MOF 1ais able to uptake considerable amounts of CO2 at room temperature, and be further used for the efficient conversion of epoxides along with CO2 into cyclic carbonates under mild conditions without a co-catalyst. To control intra-hospital cross-infection in the Department of Ultrasound, the anti-bacterial activity of the compound was assessed in a systemic Staphylococcus aureus infection mouse model. The survival rate of systemic Staphylococcus aureus infected mice after compound treatment was determined to evaluate protective effect of the compound in vivo. The number of colony-forming units (CFUs) in the organs of infected mice was also counted for further verification.


References

[1]  J. Zhou, X. Guo, C. Du, X. Wang, Opt. Lett. 2019, 44, 5390.
         | Crossref | GoogleScholarGoogle Scholar | 31675015PubMed |

[2]  A. Dangi, S. Agrawal, S. R. Kothapalli, Opt. Lett. 2019, 44, 5326.
         | Crossref | GoogleScholarGoogle Scholar | 31674999PubMed |

[3]  W. Liu, H. Li, H. Zhu, P. Xu, Materials 2020, 13, 1180.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  Z. Wang, X. Zhang, S. Jiang, Y. Qu, D. Ou, J. Wang, J. Alloys Compd. 2020, 828, 154412.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  J. Su, Z. Sheng, A. Liu, Y. Han, Y. Chen, IEEE Trans. Commun. 2020, 68, 998.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  Q. L. Zhu, T. L. Sheng, R. B. Fu, S. M. Hu, L. Chen, C. J. Shen, X. Ma, X. T. Wu, Chem. – Eur. J. 2011, 17, 3358.
         | Crossref | GoogleScholarGoogle Scholar | 21337438PubMed |

[7]  D. Damasceno Borges, M. Prakash, N. A. Ramsahye, P. L. Llewellyn, S. Surblé, P. Horcajada, C. Serre, G. Maurin, Mol. Simul. 2015, 41, 1357.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  D. M. Chen, X. J. Zhang, CrystEngComm 2019, 21, 4696.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  L. Zhang, W. Yang, X. Y. Wu, C. Z. Lu, W. Z. Chen, Chem. – Eur. J. 2016, 4, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  Q. Zhang, J. Yu, J. Cai, L. Zhang, Y. Cui, Y. Yang, B. Chen, G. Qian, Chem. Commun. 2015, 51, 14732.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X. Duan, Y. Zhou, R. Lv, B. Yu, H. Chen, Z. Ji, Y. Cui, Y. Yang, G. Qian, J. Solid State Chem. 2018, 260, 31.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  X. Duan, R. Lv, Z. Shi, C. Wang, H. Li, J. Ge, Z. Ji, Y. Yang, B. Li, G. Qian, J. Solid State Chem. 2019, 277, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  X. Meng, S. Y. Song, X. Z. Song, M. Zhu, S. N. Zhao, L. L. Wu, H. J. Zhang, Chem. Commun. 2015, 51, 8150.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  R. A. Agarwal, A. K. Gupta, D. De, Cryst. Growth Des. 2019, 19, 2010.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Yuan, J. Li, X. Sun, G. Li, Y. Liu, G. Verma, S. Ma, Chem. Mater. 2019, 31, 1084.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  C. Yao, S. Zhou, X. Kang, Y. Zhao, R. Yan, Y. Zhang, L. Wen, Inorg. Chem. 2018, 57, 11157.
         | Crossref | GoogleScholarGoogle Scholar | 30136578PubMed |

[17]  B. Ugale, S. Kumar, T. J. Dhilip Kumar, C. M. Nagaraja, Inorg. Chem. 2019, 58, 3925.
         | Crossref | GoogleScholarGoogle Scholar | 30807120PubMed |

[18]  H. H. Wang, L. Hou, Y. Z. Li, C. Y. Jiang, Y. Y. Wang, Z. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 17969.
         | Crossref | GoogleScholarGoogle Scholar | 28513135PubMed |

[19]  D. M. Chen, X. J. Zhang, J. Solid State Chem. 2019, 278, 120906.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  J. Lan, M. Liu, X. Lu, X. Zhang, J. Sun, ACS Sustain. Chem. & Eng. 2018, 6, 8727.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  T. Li, Y. Qian, Z. Miao, P. Zheng, T. Shi, X. Jiang, L. Pan, F. Qian, G. Yang, H. An, Y. Zheng, Front. Pharmacol. 2020, 11, 104.
         | Crossref | GoogleScholarGoogle Scholar | 32153410PubMed |

[22]  S. Borowicz, M. Van Scoyk, S. Avasarala, R. M. K. Karuppusamy, J. Tauler, R. K. Bikkavilli, R. A. Winn, J. Vis. Exp. 2014, 92, e51998.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  H. Chen, J. Liu, P. Liu, Y. Wang, H. Xiao, Q. Yang, X. Feng, S. Zhou, J. Catal. 2019, 379, 121.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  H. Chen, P. Liu, J. Li, Y. Wang, C. She, J. Liu, L. Zhang, Q. Yang, S. Zhou, X. Feng, ACS Appl. Mater. Interfaces 2019, 11, 31009.
         | Crossref | GoogleScholarGoogle Scholar | 31368295PubMed |