Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

New Bidentate N-Sulfonyl-Substituted Aromatic Amines as Chelate Ligand Backbones: Pd Catalyst Generation in C–C Coupling via In Situ and Precatalyst Modes

Hammed Olawale Oloyede A B D , Raymond Akong Akong A B , Joseph Anthony Orighomisan Woods A , Helmar Görls B , Winfried Plass https://orcid.org/0000-0003-3473-9682 B E and Abiodun Omokehinde Eseola https://orcid.org/0000-0003-4713-2468 B C E
+ Author Affiliations
- Author Affiliations

A Inorganic Chemistry Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria.

B Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743 Jena, Germany

C Materials Chemistry Group, Department of Chemical Sciences, Redeemer’s University Ede, Osun State, Nigeria.

D Department of Chemistry, School of Science, Adeyemi College of Education, Ondo, Ondo State, Nigeria.

E Corresponding authors. Email: sekr.plass@uni-jena.de; biodun.eseola@uni-jena.de

Australian Journal of Chemistry 74(2) 101-110 https://doi.org/10.1071/CH19668
Submitted: 31 December 2019  Accepted: 8 April 2020   Published: 3 July 2020

Abstract

A series of six new, bidentate ligands based on N-(2-(R-sulfonamido)benzyl)R-sulfonamide have been isolated as dianionic or monoanionic chelators via condensation of 2-(aminomethyl)aniline with sulfonyl chloride reagents; R = methyl (1 and 1′), tolyl (2 and 2′), 2,4,6-trimethylphenyl (3), or 2,4,6-triisopropylphenyl (4). Complexes of ligands 24 reacted at room temperature with palladium(ii) acetate in the presence of various monodentate N-donor co-ligands to form complexes Pd2(2dmap), Pd2′(OAc.py), Pd3(2acn), Pd3(2py), Pd4(2acn), and Pd4(2py), which were structurally confirmed by three X-ray crystal analyses. Results of catalysis studies in water showed high turnover frequencies and yields of up to 98 % within 10 min and at 0.2 mol-% palladium catalyst loading. Relative to ligand-free catalysis in the presence of only Pd(OAc)2, the ligand-supported palladium species clearly possess positive catalytic advantage. Furthermore, Suzuki coupling efficiencies by 1 : 1 ‘Pd(OAc)2 + ligand’ yielded notably better outcomes than for the 1 : 2 ‘Pd(OAc)2 + ligand’ in situ catalyst generation, which reveals that coordinative saturation is undesirable. The size of the complementing monodentate co-ligand was observed to influence the catalytic efficiency such that bulkier co-ligands consistently yielded improved turnover frequency values, which leads to the conclusion that steric repulsion between the synthesised ligands and the bulkier co-ligands aided the generation of vacant coordination sites for the more active complexes. Moderate Heck coupling activity was recorded for the complexes and better activities appear to correlate with moderate bulkiness of ligand 3.


References

[1]  S. Akkoç, İ. Özer İlhan, Y. Gök, V. Kayser, Inorg. Chim. Acta 2017, 461, 52.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y.-B. Wang, Y.-X. Liu, Z.-H. Zhu, X.-M. Zhao, B. Song, X. Zhu, X.-Q. Hao, J. Saudi Chem. Soc. 2019, 23, 104.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander, Angew. Chem. Int. Ed. 2019, 58, 6152.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  C. Ma, C.-Q. Zhao, Y.-Q. Li, L.-P. Zhang, X.-T. Xu, K. Zhang, T.-S. Mei, Chem. Commun. 2017, 53, 12189.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  F.-S. Han, Chem. Soc. Rev. 2013, 42, 5270.
         | Crossref | GoogleScholarGoogle Scholar | 23460083PubMed |

[6]  G. Cahiez, A. Moyeux, Chem. Rev. 2010, 110, 1435.
         | Crossref | GoogleScholarGoogle Scholar | 20148539PubMed |

[7]  N. J. S. Costa, P. K. Kiyohara, A. L. Monteiro, Y. Coppel, K. Philippot, L. M. Rossi, J. Catal. 2010, 276, 382.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. K. Yılmaz, S. İnce, S. Yılmaz, M. Keleş, Inorg. Chim. Acta 2018, 482, 252.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  S. Ostrowska, M. Kubicki, C. Pietraszuk, Inorg. Chim. Acta 2018, 482, 317.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. M. Heravi, E. Hashemi, Tetrahedron 2012, 68, 9145.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. F. P. Biajoli, C. S. Schwalm, J. Limberger, T. S. Claudino, A. L. Monteiro, J. Braz. Chem. Soc. 2014, 25, 2186.

[12]  C. Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. Dumrath, C. Lübbe, M. Beller, in Palladium-Catalyzed Coupling Reactions (Ed. Á. Molnár) 2013, Vol. 117, pp. 445–489 (Wiley-VCH: Weinheim)

[14]  E. Broumidis, P. A. Koutentis, Tetrahedron Lett. 2017, 58, 2661.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  E.-i. Negishi, T. Takahashi, K. Akiyoshi, J. Organomet. Chem. 1987, 334, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E.-i. Negishi, Angew. Chem. Int. Ed. 2011, 50, 6738.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. Suzuki, Angew. Chem. Int. Ed. 2011, 50, 6722.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  A. O. Eseola, D. Geibig, H. Görls, W.-H. Sun, X. Hao, J. A. O. Woods, W. Plass, J. Organomet. Chem. 2014, 754, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  Q. Liu, X. Dong, J. Li, J. Xiao, Y. Dong, H. Liu, ACS Catal. 2015, 5, 6111.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S.-L. Mao, Y. Sun, G.-A. Yu, C. Zhao, Z.-J. Han, J. Yuan, X. Zhu, Q. Yang, S.-H. Liu, Org. Biomol. Chem. 2012, 10, 9410.
         | Crossref | GoogleScholarGoogle Scholar | 23111458PubMed |

[22]  M. Sedighipoor, A. H. Kianfar, G. Mohammadnezhad, H. Görls, W. Plass, Inorg. Chim. Acta 2018, 476, 20.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  Y. A. Gur’eva, P. A. Slepukhin, A. V. Kuchin, Inorg. Chim. Acta 2019, 486, 602.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  T. J. Colacot, Platin. Met. Rev. 2012, 56, 110.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  N. C. Bruno, M. T. Tudge, S. L. Buchwald, Chem. Sci. 2013, 4, 916.
         | Crossref | GoogleScholarGoogle Scholar | 23667737PubMed |

[26]  O. Navarro, Y. Oonishi, R. A. Kelly, E. D. Stevens, O. Briel, S. P. Nolan, J. Organomet. Chem. 2004, 689, 3722.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. Shen, Y.-C. Hu, T.-T. Liu, C. Ni, Y. Luo, Y.-C. Cao, Tetrahedron Lett. 2016, 57, 2055.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  N. Touj, N. Gürbüz, N. Hamdi, S. Yaşar, İ. Özdemir, Inorg. Chim. Acta 2018, 478, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. Aprile, M. Serafini, T. Pirali, Drug Discov. Today 2019, 24, 2234.
         | Crossref | GoogleScholarGoogle Scholar | 31494188PubMed |

[30]  Y. Xiang, N. N. L. Oo, J. P. Lee, Z. Li, X. J. Loh, Drug Discov. Today 2017, 22, 1318.
         | Crossref | GoogleScholarGoogle Scholar | 28428056PubMed |

[31]  D. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J. S. Kim, W. Lin, Chem. Rev. 2019, 119, 10403.
         | Crossref | GoogleScholarGoogle Scholar | 31314507PubMed |

[32]  T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930.
         | Crossref | GoogleScholarGoogle Scholar | 19334729PubMed |

[33]  J. S. Arora, V. G. Gaikar, RSC Adv. 2016, 6, 39663.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. Stradiotto, R. J. Lundgren, Ligand Design in Metal Chemistry 2016 (John Wiley & Sons, Ltd: Chichester).

[35]  Z.-L. Fang, R.-M. Yu, J. Zhang, C.-Z. Lu, CrystEngComm 2011, 13, 4032.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  S. Yaşar, Ç. Şahin, M. Arslan, İ. Özdemir, J. Organomet. Chem. 2015, 776, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  J.-M. Collinson, J. D. E. T. Wilton-Ely, S. Díez-González, Catal. Commun. 2016, 87, 78.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  X.-Y. Dong, C.-D. Si, Y. Fan, D.-C. Hu, X.-Q. Yao, Y.-X. Yang, J.-C. Liu, Cryst. Growth Des. 2016, 16, 2062.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Comprehensive Coordination Chemistry II: From Biology to Nanotechnology (Eds J. A. McCleverty, T. J. Meyer) 2004 (Elsevier/Pergamon: Amsterdam).

[40]  A. O. Eseola, H. Görls, M. Bangesh, W. Plass, New J. Chem. 2018, 42, 7884.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  H. O. Oloyede, J. A. O. Woods, H. Görls, W. Plass, A. O. Eseola, New J. Chem. 2019, 43, 18322.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. O. Eseola, H. Görls, W. Plass, Mol. Catal. 2019, 473, 110398.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  H. O. Oloyede, J. A. O. Woods, H. Görls, W. Plass, A. O. Eseola, Polyhedron 2019, 159, 182.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  J. N. Baxter, J. Cymerman-Craig, J. B. Willis, J. Chem. Soc. 1955, 669.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  R. G. Laughlin, J. Am. Chem. Soc. 1967, 89, 4268.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  R. Ni, N. Mitsuda, T. Kashiwagi, K. Igawa, K. Tomooka, Angew. Chem. Int. Ed. 2015, 54, 1190.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  G. T. Morgan, F. M. G. Micklethwait, J. Chem. Soc. Trans. 1905, 87, 1302.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  Y. Qiao, J. Zhao, J. Chang, D. Wei, ChemCatChem 2019, 11, 780.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  T. Kato, H. Masu, H. Takayanagi, E. Kaji, K. Katagiri, M. Tominaga, I. Azumaya, Tetrahedron 2006, 62, 8458.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  W.-H. Leung, E. K.-F. Chow, S.-M. Peng, Polyhedron 1993, 12, 1635.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  D. Bulfield, S. M. Huber, J. Org. Chem. 2017, 82, 13188.
         | Crossref | GoogleScholarGoogle Scholar | 29156885PubMed |

[52]  A. Shen, C. Ni, Y.-C. Cao, H. Zhou, G.-H. Song, X.-F. Ye, Tetrahedron Lett. 2014, 55, 3278.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  P. G. Gildner, T. J. Colacot, Organometallics 2015, 34, 5497.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  R. W. W. Hooft, COLLECT: Data Collection Software 1998 (B. V. Nonius: Delft, The Netherlands).

[55]  Z. Otwinowski, W. Minor, in Macromolecular Crystallography Part A: Processing of X-Ray Diffraction Data Collected in Oscillation Mode (Eds C. W. Carter, R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).

[56]  SADABS 2002 (Bruker-AXS Inc.: Madison, WI).

[57]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |

[58]  A. L. Spek, Acta Crystallogr. C 2015, 71, 9.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  A. O. Eseola, O. Akogun, H. Görls, O. Atolani, G. A. Kolawole, W. Plass, J. Mol. Catal. Chem. 2014, 387, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[60]  H. O. Oloyede, J. A. O. Woods, H. Görls, W. Plass, A. O. Eseola, Polyhedron 2019, 159, 182.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  A. O. Eseola, H. Görls, J. A. O. Woods, W. Plass, J. Mol. Catal. Chem. 2015, 406, 224.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  K. Matos, L. L. de Oliveira, C. Favero, A. L. Monteiro, M. Hörner, J.-F. Carpentier, M. P. Gil, O. L. Casagrande, Inorg. Chim. Acta 2009, 362, 4396.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  H. O. Oloyede, J. A. Orighomisan Woods, H. Görls, W. Plass, A. O. Eseola, J. Mol. Struct. 2020, 1199, 127030.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  H. O. Oloyede, H. Görls, J. A. Orighomisan Woods, W. Plass, A. O. Eseola, J. Mol. Struct. 2019, 1197, 336.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  P. C. Perumgani, B. Kodicherla, M. R. Mandapati, S. P. Parvathaneni, Inorg. Chim. Acta 2018, 477, 227.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  K. Buldurun, İ. Özdemir, J. Mol. Struct. 2019, 1192, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[67]  S. Kumar, R. R. Jha, S. Yadav, R. Gupta, New J. Chem. 2015, 39, 2042.
         | Crossref | GoogleScholarGoogle Scholar |