Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW (Open Access)

Spectroelectrochemistry: A Powerful Tool for Studying Fundamental Properties and Emerging Applications of Solid-State Materials Including Metal–Organic Frameworks

Deanna M. D’Alessandro https://orcid.org/0000-0002-1497-2543 A C and Pavel M. Usov A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan.

C Corresponding author. Email: deanna.dalessandro@sydney.edu.au




Deanna obtained her BSc in chemistry, physics and mathematics from James Cook University followed by PhD research with Em/Prof. Richard Keene which received the 2006 RACI Cornforth Medal and a 2007 IUPAC Prize for Young Chemists. Following postdoctoral work with Prof. Jeff Long at UC Berkeley (2007–2009) as the Dow Chemical Company Fellow (American-Australian Association) and an 1851 Fellow, she built her independent research exploring emergent electronic phenomena in framework materials. She has held a L’Oréal Australia for Women in Science Fellowship, ARC QEII and Future Fellowships, and was the recipient of the 2017 LeFévre Medal (Australian Academy of Science).



Pavel completed his BSc in chemistry at the University of Adelaide (2010) followed by Honours Class I (2011) and PhD research (2015) in the development of spectroelectrochemical methods for framework materials at the University of Sydney with A/Prof. Deanna D’Alessandro. Following a postdoctoral position with A/Prof. Amanda Morris at Virginia Tech in the USA in the area of electrocatalytic framework materials, he received a Japan Society for the Promotion of Science (JSPS) Fellowship at the Tokyo Institute of Technology, Japan, to work with Prof. Masaki Kawano. Pavel is currently a Specially Appointed Assistant Professor in the same department.

Australian Journal of Chemistry 74(2) 77-93 https://doi.org/10.1071/CH20301
Submitted: 9 October 2020  Accepted: 30 November 2020   Published: 22 January 2021

Journal Compilation © CSIRO 2021 Open Access CC BY

Abstract

Spectroelectrochemistry (SEC) encompasses a broad suite of electroanalytical techniques where electrochemistry is coupled with various spectroscopic methods. This powerful and versatile array of methods is characterised as in situ, where a fundamental property is measured in real time as the redox state is varied through an applied voltage. SEC has a long and rich history and has proved highly valuable for discerning mechanistic aspects of redox reactions that underpin the function of biological, chemical, and physical systems in the solid and solution states, as well as in thin films and even in single molecules. This perspective article highlights the state of the art in solid-state SEC (ultraviolet–visible–near-infrared, infrared, Raman, photoluminescence, electron paramagnetic resonance, and X-ray absorption spectroscopy) relevant to interrogating solid state materials, particularly those in the burgeoning field of metal–organic frameworks (MOFs). Emphasis is on developments in the field over the past 10 years and prospects for application of SEC techniques to probing fundamental aspects of MOFs and MOF-derived materials, along with their emerging applications in next-generation technologies for energy storage and transformation. Along with informing the already expert practitioner of SEC, this article provides some guidance for researchers interested in entering the field.


References

[1]  T. Kuwana, R. K. Darlington, D. W. Leedy, Anal. Chem. 1964, 36, 2023.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  T. Kuwana, W. R. Heineman, Acc. Chem. Res. 1976, 9, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  L. Dunsch, J. Solid State Electrochem. 2011, 15, 1631.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  W. Kaim, G. K. Lahiri, Coord. Chem. Rev. 2019, 393, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  R. Murase, B. W. Ding, Q. Y. Gu, D. M. D’Alessandro, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2019, 377, 20180226.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  https://www.un.org/sustainabledevelopment/sustainable-development-goals/.

[7]  K. R. Idzik, P. Rapta, P. J. Cywinski, R. Beckert, L. Dunsch, Electrochim. Acta 2010, 55, 4858.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  U. Schröder, F. Scholz, Inorg. Chem. 2000, 39, 1006.
         | Crossref | GoogleScholarGoogle Scholar | 12526381PubMed |

[9]  A. Neckel, Microchim. Acta 1987, 93, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  K. Ashley, S. Pons, Chem. Rev. 1988, 88, 673.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. Kalbac, L. Kavan, M. Zukalová, L. Dunsch, Chem. – Eur. J. 2006, 12, 4451.
         | Crossref | GoogleScholarGoogle Scholar | 16552794PubMed |

[12]  T. Itoh, R. L. McCreery, J. Am. Chem. Soc. 2002, 124, 10894.
         | Crossref | GoogleScholarGoogle Scholar | 12207545PubMed |

[13]  P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  T. S. Pinyayev, C. J. Seliskar, W. R. Heineman, Anal. Chem. 2010, 82, 9743.
         | Crossref | GoogleScholarGoogle Scholar | 21053915PubMed |

[15]  M. Dias, P. Hudhomme, E. Levillain, L. Perrin, Y. Sahin, F.-X. Sauvage, et al. Electrochem. Commun. 2004, 6, 325.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  R. T. Boeré, A. M. Bond, T. Chivers, S. W. Feldberg, T. L. Roemmele, Inorg. Chem. 2007, 46, 5596.
         | Crossref | GoogleScholarGoogle Scholar | 17552513PubMed |

[17]  T. Sixt, J. Fiedler, W. Kaim, Inorg. Chem. Commun. 2000, 3, 80.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  R. D. Webster, Anal. Chem. 2004, 76, 1603.
         | Crossref | GoogleScholarGoogle Scholar | 15018557PubMed |

[19]  U. Bussy, P. Giraudeau, V. Silvestre, T. Jaunet-Lahary, V. Ferchaud-Roucher, M. Krempf, et al. Anal. Bioanal. Chem. 2013, 405, 5817.
         | Crossref | GoogleScholarGoogle Scholar | 23673569PubMed |

[20]  L. R. Sharpe, W. R. Heineman, R. C. Elder, Chem. Rev. 1990, 90, 705.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  I. B. Polovov, V. A. Volkovich, J. M. Charnock, B. Kralj, R. G. Lewin, H. Kinoshita, et al. Inorg. Chem. 2008, 47, 7474.
         | Crossref | GoogleScholarGoogle Scholar | 18665589PubMed |

[22]  N. R. S. Farley, S. J. Gurman, A. R. Hillman, Electrochem. Commun. 1999, 1, 449.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  M. Fleischmann, A. Oliver, J. Robinson, Electrochim. Acta 1986, 31, 899.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. G. Samant, M. F. Toney, G. L. Borges, L. Blum, O. R. Melroy, Surf. Sci. 1988, 193, L29.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  K. Ogle, Corrosion 2019, 75, 1398.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. Garoz-Ruiz, J. V. Perales-Rondon, A. Heras, A. Colina, Electroanalysis 2019, 31, 1254.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. M. Bond, N. W. Duffy, S.-X. Guo, J. Zhang, D. Elton, Anal. Chem. 2005, 77, 186A.
         | Crossref | GoogleScholarGoogle Scholar | 15889488PubMed |

[28]  T. E. Rosser, E. Reisner, ACS Catal. 2017, 7, 3131.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. J. A. Lozeman, P. Fuhrer, W. Olthuis, M. Odijk, Analyst 2020, 145, 2482.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  W. Kaim, J. Fiedler, Chem. Soc. Rev. 2009, 38, 3373.
         | Crossref | GoogleScholarGoogle Scholar | 20449056PubMed |

[31]  P. Bujak, I. Kulszewicz-Bajer, M. Zagorska, V. Maurel, I. Wielgus, A. Pron, Chem. Soc. Rev. 2013, 42, 8895.
         | Crossref | GoogleScholarGoogle Scholar | 24030727PubMed |

[32]  A. K. Surca, G. Drazic, M. Mihelcic, J. Sol-Gel Sci. Technol. 2020, 95, 587.

[33]  O. Aleveque, C. Gautier, E. Levillain, Curr. Opin. Electrochem. 2019, 15, 34.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  R. Hao, Z. Y. Peng, B. Zhang, ACS Omega 2020, 5, 89.
         | Crossref | GoogleScholarGoogle Scholar | 31956755PubMed |

[35]  G. Ferey, F. Millange, M. Morcrette, C. Serre, M. L. Doublet, J. M. Greneche, et al. Angew. Chem. Int. Ed. 2007, 46, 3259.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  G. de Combarieu, M. Morcrette, F. Millange, N. Guillou, J. Cabana, C. P. Grey, et al. Chem. Mater. 2009, 21, 1602.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Gd. Combarieu, S. Hamelet, F. Millange, M. Morcrette, J.-M. Tarascon, G. Férey, et al. Electrochem. Commun. 2009, 11, 1881.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  C. F. Leong, B. Chan, T. B. Faust, D. M. D’Alessandro, Chem. Sci. 2014, 5, 4724.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  C. F. Leong, B. Chan, T. B. Faust, P. Turner, D. M. D’Alessandro, Inorg. Chem. 2013, 52, 14246.
         | Crossref | GoogleScholarGoogle Scholar | 24283401PubMed |

[40]  C. F. Leong, T. B. Faust, P. Turner, P. M. Usov, C. J. Kepert, R. Babarao, et al. Dalton Trans. 2013, 9831.
         | Crossref | GoogleScholarGoogle Scholar | 23519323PubMed |

[41]  C. Hua, D. M. A. D’Alessandro, CrystEngComm 2014, 16, 6331.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  C. Hua, P. Turner, D. M. D’Alessandro, Dalton Trans. 2013, 6310.
         | Crossref | GoogleScholarGoogle Scholar | 23518920PubMed |

[43]  C. R. Wade, M. Li, M. Dincă, Angew. Chem. 2013, 125, 13619.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  P. M. Usov, C. Fabian, D. M. D’Alessandro, Chem. Commun. 2012, 48, 3945.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  F. J. Rizzuto, T. B. Faust, B. Chan, C. Hua, D. M. D’Alessandro, C. J. Kepert, Chem. – Eur. J. 2014, 20, 17597.
         | Crossref | GoogleScholarGoogle Scholar | 25346539PubMed |

[46]  L. Leon, J. D. Mozo, Trends Analyt. Chem. 2018, 102, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  F. W. Richey, B. Dyatkin, Y. Gogotsi, Y. A. Elabd, J. Am. Chem. Soc. 2013, 135, 12818.
         | Crossref | GoogleScholarGoogle Scholar | 23915377PubMed |

[48]  D. G. Sanderson, L. B. Anderson, Anal. Chem. 1985, 57, 2388.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  W. A. Gazotti, G. Casalbore-Miceli, S. Mitzakoff, A. Geri, M. C. Gallazzi, M. A. De Paoli, Electrochim. Acta 1999, 44, 1965.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  R. J. Mortimer, Chem. Soc. Rev. 1997, 26, 147.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  M. Mastragostino, A. M. Marinangeli, A. Corradini, S. Giacobbe, Synth. Met. 1989, 28, 501.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  I. Piljac, M. Tkalcec, B. Grabaric, Anal. Chem. 1975, 47, 1369.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  W. R. Heineman, J. Chem. Educ. 1983, 60, 305.
         | Crossref | GoogleScholarGoogle Scholar |

[54]  W. A. Nevin, A. B. P. Lever, Anal. Chem. 1988, 60, 727.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  R. Holze, J. Solid State Electrochem. 2004, 8, 982.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  G. Zotti, G. Schiavon, Synth. Met. 1989, 31, 347.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  E. M. Genies, M. Lapkowski, J. Electroanal. Chem. Interfacial Electrochem. 1987, 220, 67.
         | Crossref | GoogleScholarGoogle Scholar |

[58]  C. Creutz, H. Taube, J. Am. Chem. Soc. 1973, 95, 1086.
         | Crossref | GoogleScholarGoogle Scholar |

[59]  D. M. D’Alessandro, F. R. Keene, Chem. Soc. Rev. 2006, 35, 424.
         | Crossref | GoogleScholarGoogle Scholar | 16636726PubMed |

[60]  D. M. D’Alessandro, F. R. Keene, Chem. Rev. 2006, 106, 2270.
         | Crossref | GoogleScholarGoogle Scholar | 16771450PubMed |

[61]  K. Itaya, K. Shibayama, H. Akahoshi, S. Toshima, J. Appl. Phys. 1982, 53, 804.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  D. Ellis, M. Eckhoff, V. D. Neff, J. Phys. Chem. 1981, 85, 1225.
         | Crossref | GoogleScholarGoogle Scholar |

[63]  C. M. Ngue, Y. H. Liu, Y. S. Wen, M. K. Leung, C. W. Chiu, K. L. Lu, Dalton Trans. 2019, 10122.
         | Crossref | GoogleScholarGoogle Scholar | 31180414PubMed |

[64]  I. Hod, W. Bury, D. M. Karlin, P. Deria, C.-W. Kung, M. J. Katz, et al. Adv. Mater. 2014, 26, 6295.
         | Crossref | GoogleScholarGoogle Scholar | 25070374PubMed |

[65]  K. AlKaabi, R. Wade Casey, M. Dincă, Chem 2016, 1, 264.
         | Crossref | GoogleScholarGoogle Scholar |

[66]  B. A. Johnson, A. Bhunia, H. H. Fei, S. M. Cohen, S. Ott, J. Am. Chem. Soc. 2018, 140, 2985.
         | Crossref | GoogleScholarGoogle Scholar | 29421875PubMed |

[67]  T. Mitra, F. Moreau, A. Nevin, C. U. Perotto, A. Summerfield, E. S. Davies, et al. Chem. Sci. 2018, 9, 6572.
         | Crossref | GoogleScholarGoogle Scholar | 30310589PubMed |

[68]  J. G. Santaclara, M. A. Nasalevich, S. Castellanos, W. H. Evers, F. C. M. Spoor, K. Rock, et al. ChemSusChem 2016, 9, 388.
         | Crossref | GoogleScholarGoogle Scholar | 26871265PubMed |

[69]  S. R. Ahrenholtz, C. C. Epley, A. J. Morris, J. Am. Chem. Soc. 2014, 136, 2464.
         | Crossref | GoogleScholarGoogle Scholar | 24437480PubMed |

[70]  I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, J. T. Hupp, ACS Catal. 2015, 5, 6302.
         | Crossref | GoogleScholarGoogle Scholar |

[71]  N. Kornienko, Y. B. Zhao, C. S. Kiley, C. H. Zhu, D. Kim, S. Lin, et al. J. Am. Chem. Soc. 2015, 137, 14129.
         | Crossref | GoogleScholarGoogle Scholar | 26509213PubMed |

[72]  P. Kubelka, J. Opt. Soc. Am. 1948, 38, 448.
         | Crossref | GoogleScholarGoogle Scholar | 18916891PubMed |

[73]  P. W. Doheny, J. K. Clegg, F. Tuna, D. Collison, C. J. Kepert, D. M. D’Alessandro, Chem. Sci. 2020, 11, 5213.
         | Crossref | GoogleScholarGoogle Scholar |

[74]  U. Schroder, F. Scholz, J. Solid State Electrochem. 1997, 1, 62.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  U. Schroder, B. Meyer, F. Scholz, Fresenius J. Anal. Chem. 1996, 356, 295.

[76]  R. Murase, C. J. Commons, T. A. Hudson, G. N. L. Jameson, C. D. Ling, K. S. Murray, et al. Inorg. Chem. 2020, 59, 3619.
         | Crossref | GoogleScholarGoogle Scholar | 32124614PubMed |

[77]  B. W. Ding, C. Hua, C. J. Kepert, D. M. D’Alessandro, Chem. Sci. 2019, 10, 1392.
         | Crossref | GoogleScholarGoogle Scholar |

[78]  P. M. Usov, C. F. Leong, B. Chan, M. Hayashi, H. Kitagawa, J. J. Sutton, et al. Phys. Chem. Chem. Phys. 2018, 20, 25772.
         | Crossref | GoogleScholarGoogle Scholar | 30283919PubMed |

[79]  C. Hua, P. W. Doheny, B. W. Ding, B. Chan, M. Yu, C. J. Kepert, et al. J. Am. Chem. Soc. 2018, 140, 6622.
         | Crossref | GoogleScholarGoogle Scholar | 29727176PubMed |

[80]  C. Hua, J. Y. Ge, F. Tuna, D. Collison, J. L. Zuo, D. M. D’Alessandro, Dalton Trans. 2017, 2998.
         | Crossref | GoogleScholarGoogle Scholar | 28198492PubMed |

[81]  C. Hua, A. Baldansuren, F. Tuna, D. Collison, D. M. D’Alessandro, Inorg. Chem. 2016, 55, 7270.
         | Crossref | GoogleScholarGoogle Scholar | 27419690PubMed |

[82]  C. Hua, P. Turner, D. M. D’Alessandro, Dalton Trans. 2015, 15297.
         | Crossref | GoogleScholarGoogle Scholar | 26054414PubMed |

[83]  C. Hua, D. M. D’Alessandro, Supramol. Chem. 2015, 27, 792.
         | Crossref | GoogleScholarGoogle Scholar |

[84]  D. A. Sherman, R. Murase, S. G. Duyker, Q. Y. Gu, W. Lewis, T. Lu, et al. Nat. Commun. 2020, 11, 2808.
         | Crossref | GoogleScholarGoogle Scholar | 32499512PubMed |

[85]  R. W. Elliott, P. M. Usov, B. F. Abrahams, B. Chan, R. Robson, D. M. D’Alessandro, Inorg. Chem. 2018, 57, 9766.
         | Crossref | GoogleScholarGoogle Scholar | 29629755PubMed |

[86]  B. M. Beam, N. R. Armstrong, S. B. Mendes, Analyst 2009, 134, 454.
         | Crossref | GoogleScholarGoogle Scholar | 19238279PubMed |

[87]  C. Ge, W. J. Doherty Iii, S. B. Mendes, N. R. Armstrong, S. S. Saavedra, Talanta 2005, 65, 1126.
         | Crossref | GoogleScholarGoogle Scholar | 18969922PubMed |

[88]  D. R. Dunphy, S. B. Mendes, S. S. Saavedra, N. R. Armstrong, Anal. Chem. 1997, 69, 3086.
         | Crossref | GoogleScholarGoogle Scholar | 21639329PubMed |

[89]  K. Imai, T. Okazaki, N. Hata, S. Taguchi, K. Sugawara, H. Kuramitz, Anal. Chem. 2015, 87, 2375.
         | Crossref | GoogleScholarGoogle Scholar | 25607737PubMed |

[90]  P. A. Christensen, in Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications (Eds J. Yarwood, R. Douthwaite, S. Duckett) 2010, Vol. 41, pp. 125–165 (The Royal Society of Chemistry: London).

[91]  K. Ashley, Talanta 1991, 38, 1209.
         | Crossref | GoogleScholarGoogle Scholar | 18965286PubMed |

[92]  S. D. Glover, J. C. Goeltz, B. J. Lear, C. P. Kubiak, Coord. Chem. Rev. 2010, 254, 331.
         | Crossref | GoogleScholarGoogle Scholar |

[93]  M. Krejčik, M. Daněk, F. Hartl, J. Electroanal. Chem. Interfacial Electrochem. 1991, 317, 179.
         | Crossref | GoogleScholarGoogle Scholar |

[94]  J. P. Bullock, D. C. Boyd, K. R. Mann, Inorg. Chem. 1987, 26, 3084.
         | Crossref | GoogleScholarGoogle Scholar |

[95]  W. G. Mäntele, A. M. Wollenweber, E. Nabedryk, J. Breton, Proc. Natl. Acad. Sci. USA 1988, 85, 8468.
         | Crossref | GoogleScholarGoogle Scholar | 16593991PubMed |

[96]  P. J. Kulesza, M. A. Malik, A. Denca, J. Strojek, Anal. Chem. 1996, 68, 2442.
         | Crossref | GoogleScholarGoogle Scholar |

[97]  Z. Ping, H. Neugebauer, A. Neckel, Electrochim. Acta 1996, 41, 767.
         | Crossref | GoogleScholarGoogle Scholar |

[98]  T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, J. Washington, C. P. Kubiak, Science 1997, 277, 660.
         | Crossref | GoogleScholarGoogle Scholar |

[99]  J. C. Salsman, C. P. Kubiak, T. Ito, J. Am. Chem. Soc. 2005, 127, 2382.
         | Crossref | GoogleScholarGoogle Scholar | 15724979PubMed |

[100]  H. X. Zhong, M. Ghorbani-Asl, K. H. Ly, J. C. Zhang, J. Ge, M. C. Wang, et al. Nat. Commun. 2020, 11, 1409.

[101]  P. Hosseini, G. Wittstock, I. Brand, J. Electroanal. Chem. 2018, 812, 199.
         | Crossref | GoogleScholarGoogle Scholar |

[102]  K. Zhao, Y. M. Liu, X. Quan, S. Chen, H. T. Yu, ACS Appl. Mater. Interfaces 2017, 9, 5302.
         | Crossref | GoogleScholarGoogle Scholar | 28103017PubMed |

[103]  See pp. 1–12 in: D. A. Long, Raman Spectroscopy 1977 (McGraw Hill: New York, NY).

[104]  M. J. L. Santos, A. G. Brolo, E. M. Girotto, Electrochim. Acta 2007, 52, 6141.
         | Crossref | GoogleScholarGoogle Scholar |

[105]  M. Kalbáč, L. Kavan, M. Zukalová, L. Dunsch, Carbon 2007, 45, 1463.
         | Crossref | GoogleScholarGoogle Scholar |

[106]  R. S. Czernuszewicz, K. A. Macor, J. Raman Spectrosc. 1988, 19, 553.
         | Crossref | GoogleScholarGoogle Scholar |

[107]  D. L. Jeanmaire, M. R. Suchanski, R. P. Van Duyne, J. Am. Chem. Soc. 1975, 97, 1699.
         | Crossref | GoogleScholarGoogle Scholar |

[108]  I. Rey, J. C. Lassègues, P. Baudry, H. Majastre, Electrochim. Acta 1998, 43, 1539.
         | Crossref | GoogleScholarGoogle Scholar |

[109]  R. P. Rava, T. G. Spiro, J. Phys. Chem. 1985, 89, 1856.
         | Crossref | GoogleScholarGoogle Scholar |

[110]  J. Ferraris, D. O. Cowan, V. Walatka, J. H. Perlstein, J. Am. Chem. Soc. 1973, 95, 948.
         | Crossref | GoogleScholarGoogle Scholar |

[111]  W. R. Zheng, M. J. Liu, L. Y. S. Lee, ACS Catal. 2020, 10, 81.
         | Crossref | GoogleScholarGoogle Scholar |

[112]  P. M. Usov, C. McDonnell-Worth, F. Zhou, D. R. MacFarlane, D. M. D’Alessandro, Electrochim. Acta 2015, 153, 433.
         | Crossref | GoogleScholarGoogle Scholar |

[113]  M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163.
         | Crossref | GoogleScholarGoogle Scholar |

[114]  S. Schlucker, Angew. Chem. Int. Ed. 2014, 53, 4756.
         | Crossref | GoogleScholarGoogle Scholar |

[115]  S. Nie, S. R. Emory, Science 1997, 275, 1102.
         | Crossref | GoogleScholarGoogle Scholar | 9027306PubMed |

[116]  M. Drescher, G. Jeschke, EPR Spectroscopy: Applications in Chemistry and Biology 2012 (Springer Science & Business Media: Berlin).

[117]  J. Zeitouny, V. Jouikov, Phys. Chem. Chem. Phys. 2009, 11, 7161.
         | Crossref | GoogleScholarGoogle Scholar | 19672525PubMed |

[118]  Y.-M. Frapart, A. Boussac, R. Albach, E. Anxolabéhère-Mallart, M. Delroisse, J.-B. Verlhac, et al. J. Am. Chem. Soc. 1996, 118, 2669.
         | Crossref | GoogleScholarGoogle Scholar |

[119]  P. Rapta, A. Neudeck, A. Petr, L. Dunsch, J. Chem. Soc., Faraday Trans. 1998, 94, 3625.
         | Crossref | GoogleScholarGoogle Scholar |

[120]  A. Neudeck, A. Petr, L. Dunsch, Synth. Met. 1999, 107, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[121]  P. Rapta, R. Fáber, L. Dunsch, A. Neudeck, O. Nuyken, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2000, 56, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[122]  U. Evans, O. Soyemi, M. S. Doescher, U. H. F. Bunz, L. Kloppenburg, M. L. Myrick, Analyst 2001, 126, 508.
         | Crossref | GoogleScholarGoogle Scholar | 11340989PubMed |

[123]  A. Osterholm, A. Petr, C. Kvarnstrom, A. Ivaska, L. Dunsch, J. Phys. Chem. B 2008, 112, 14149.
         | Crossref | GoogleScholarGoogle Scholar | 18928313PubMed |

[124]  P. Rapta, J. Lukkari, J. Tarabek, M. Salomaeki, M. Jussila, G. Yohannes, et al. Phys. Chem. Chem. Phys. 2004, 6, 434.
         | Crossref | GoogleScholarGoogle Scholar |

[125]  A. Staško, K. Lušpai, Z. Barbieriková, J. Rimarčík, A. Vagánek, V. Lukeš, et al. J. Phys. Chem. A 2012, 116, 9919.
         | Crossref | GoogleScholarGoogle Scholar | 22974362PubMed |

[126]  P. Rapta, A. Bartl, A. Gromov, A. Staško, L. Dunsch, ChemPhysChem 2002, 3, 351.
         | Crossref | GoogleScholarGoogle Scholar | 12465514PubMed |

[127]  L. Dunsch, P. Rapta, A. Gromov, A. Staško, J. Electroanal. Chem. 2003, 547, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[128]  P. R. Murray, D. Collison, S. Daff, N. Austin, R. Edge, B. W. Flynn, et al. J. Magn. Reson. 2011, 213, 206.
         | Crossref | GoogleScholarGoogle Scholar | 22000629PubMed |

[129]  B. Valeur, in Digital Encyclopedia of Applied Physics 2009, pp. 477–531 (Wiley-VCH Verlag GmbH & Co.: Weinheim).

[130]  C. W. Machan, Curr. Opin. Electrochem. 2019, 15, 42.
         | Crossref | GoogleScholarGoogle Scholar |

[131]  J. K. Li, S. Ghoshal, W. T. Liang, M. T. Sougrati, F. Jaouen, B. Halevi, et al. Energy Environ. Sci. 2016, 9, 2418.
         | Crossref | GoogleScholarGoogle Scholar |

[132]  T. M. Arruda, B. Shyam, J. S. Lawton, N. Ramaswamy, D. E. Budil, D. E. Ramaker, et al. J. Phys. Chem. C 2010, 114, 1028.
         | Crossref | GoogleScholarGoogle Scholar |

[133]  Q. Y. Jia, E. S. Liu, L. Jiao, S. Pann, S. Mukerjee, Adv. Mater. 2019, 31, 1805157.
         | Crossref | GoogleScholarGoogle Scholar |

[134]  L. Kavan, Curr. Opin. Electrochem. 2018, 11, 122.
         | Crossref | GoogleScholarGoogle Scholar |

[135]  S. Y. Lin, P. M. Usov, A. J. Morris, Chem. Commun. 2018, 6965.
         | Crossref | GoogleScholarGoogle Scholar |

[136]  J. B. Richter, C. Eßbach, I. Senkovska, S. Kaskel, E. Brunner, Chem. Commun. 2019, 6042.
         | Crossref | GoogleScholarGoogle Scholar |