Oil Spill Source Identification Using Colorimetric Detection
Walmiria Woodland A , Richard Lim A , Cherie Motti B C , Paul Irving D , Jun Wang A , Mark Payne A , Peter C. Junk A and George Vamvounis A EA College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.
B AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Qld 4811, Australia.
C Australian Institute of Marine Science, PMB no. 3, Townsville MC, Qld 4810, Australia.
D Australian Maritime Safety Authority, Braddon, ACT 2612, Australia.
E Corresponding author. Email: george.vamvounis@jcu.edu.au
Australian Journal of Chemistry 72(11) 874-880 https://doi.org/10.1071/CH19336
Submitted: 19 July 2019 Accepted: 15 August 2019 Published: 26 September 2019
Abstract
The colorimetric detection of polycyclic aromatic hydrocarbons (PAHs) was investigated for the quick and easy identification of likely oil spill offenders. In this new technology, photochromic compounds were used to sense PAHs by varying their photoswitching capacity. To that end, three photochromes were designed and showed varying degrees of photoswitching inhibition, depending on PAH analyte, photochrome, and excitation wavelength. PAH mixtures that mimic oil spills showed the same varying response and demonstrated the accuracy of this technology. To prove the applicability of this technology, an array was assembled, using the three photochromes at three excitation wavelengths, and tested against authentic crude oil samples. Not only could these samples be differentiated, but also weathering of two distinctly different oil samples showed limited variation in response, demonstrating that this may be a viable technique for in situ oil identification.
References
[1] T. Gilbert, Oil Spills in the Australian Marine Environment: Environmental Consequences and Response Technologies 1999. Available at: https://www.researchgate.net/publication/228899633_Oil_Spills_in_the_Australian_Marine_Environment_Environmental_Consequences_and_Response_Technologies (accessed 9 September 2019)[2] V. P. Beškoski, G. Gojgić-Cvijović, B. Jovančićević, M. M. Vrvić, in Gas Chromatography – Biochemicals, Narcotics and Essential Oils (Ed. B. Salih) 2012, pp. 1–28 (IntechOpen: London).
[3] Z. Liu, J. Liu, Q. Zhu, W. Wu, Environ. Res. Lett. 2012, 7, 035302.
| Crossref | GoogleScholarGoogle Scholar |
[4] F. M. Adebiyi, E. A. Oluyemi, A. F. Adeyemi, A. A. Akande, O. S. Ajayi, Petrol. Sci. Technol. 2015, 33, 62.
| Crossref | GoogleScholarGoogle Scholar |
[5] V. Bansal, P. Kumar, E. E. Kwon, K.-H. Kim, Crit. Rev. Food Sci. Nutr. 2017, 57, 3297.
| Crossref | GoogleScholarGoogle Scholar | 26714230PubMed |
[6] E. A. Pena, L. M. Ridley, W. R. Murphy, J. R. Sowa, C. S. Bentivegna, Environ. Toxicol. Chem. 2015, 34, 1946.
| Crossref | GoogleScholarGoogle Scholar | 25867932PubMed |
[7] M. Algarra, V. Jimenez, P. F. de Violet, M. Lamotte, Anal. Bioanal. Chem. 2005, 382, 1103.
| Crossref | GoogleScholarGoogle Scholar | 15895215PubMed |
[8] J. Xu, J. Du, C. Jing, Y. Zhang, J. Cui, ACS Appl. Mater. Interfaces 2014, 6, 6891.
| Crossref | GoogleScholarGoogle Scholar | 24720732PubMed |
[9] Y.-H. Kwon, K. Sowoidnich, H. Schmidt, H.-D. Kronfeldt, J. Raman Spectrosc. 2012, 43, 1003.
| Crossref | GoogleScholarGoogle Scholar |
[10] D. L. Poster, M. M. Schantz, L. C. Sander, S. A. Wise, Anal. Bioanal. Chem. 2006, 386, 859.
| Crossref | GoogleScholarGoogle Scholar | 17019586PubMed |
[11] W. Woodland, C. A. Motti, P. Irving, L. Van Herwerden, G. Vamvounis, Aust. J. Chem. 2016, 69, 1292.
| Crossref | GoogleScholarGoogle Scholar |
[12] K. Shibata, K. Muto, S. Kobatake, M. Irie, J. Phys. Chem. 2002, 106, 209.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Zhang, Q. Zou, H. Tian, Adv. Mater. 2013, 25, 378.
| Crossref | GoogleScholarGoogle Scholar | 22911949PubMed |
[14] S. Cui, S. Pu, Y. Dai, Anal. Methods 2015, 7, 3593.
| Crossref | GoogleScholarGoogle Scholar |
[15] O. Galangau, Y. Kimura, R. Kanazawa, T. Nakashima, T. Kawai, Eur. J. Org. Chem. 2014, 7165.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. Xia, G. Liu, S. Pu, J. Mater. Chem. C Mater. Opt. Electron. Devices 2015, 3, 4023.
| Crossref | GoogleScholarGoogle Scholar |
[17] C. Zhang, C. Fan, S. Pu, G. Liu, Chin. J. Chem. 2015, 33, 1310.
| Crossref | GoogleScholarGoogle Scholar |
[18] I. S. Park, E. Heo, Y.-S. Nam, C. W. Lee, J.-M. Kim, J. Photochem. Photobiol. Chem. 2012, 238, 1.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. Irie, T. Lifka, S. Kobatake, N. Kato, J. Am. Chem. Soc. 2000, 122, 4871.
| Crossref | GoogleScholarGoogle Scholar |
[20] K. Higashiguchi, K. Matsuda, Y. Asano, A. Murakami, S. Nakamura, M. Irie, Eur. J. Org. Chem. 2005, 91.
| Crossref | GoogleScholarGoogle Scholar |
[21] D. Gendron, A. Ansaldo, G. Bubak, L. Ceseracciu, G. Vamvounis, D. Ricci, Compos. Sci. Technol. 2015, 117, 364.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. M. Dixon, M. Taniguchi, J. S. Lindsey, Photochem. Photobiol. 2005, 81, 212.
| Crossref | GoogleScholarGoogle Scholar | 15571431PubMed |
[23] R. A. Potyrailo, Chem. Rev. 2016, 116, 11877.
| Crossref | GoogleScholarGoogle Scholar | 27602947PubMed |
[24] D. Dąbrowska, A. Kot-Wasik, J. Namieśnik, Pol. J. Environ. Stud. 2008, 17, 17.
[25] C. L B. Guedes, E. D. Mauro, V. Antunes, A. S. Mangrich, Mar. Chem. 2003, 84, 1105.
[26] S. Díez, J. Sabaté, M. Viñas, J. M. Bayona, A. M. Solanas, J. Albaigs, Environ. Toxicol. Chem. 2005, 24, 2203.
| Crossref | GoogleScholarGoogle Scholar | 16193747PubMed |
[27] G. Vamvounis, D. Gendron, Tetrahedron Lett. 2013, 54, 3785.
| Crossref | GoogleScholarGoogle Scholar |
[28] D. Gendron, G. Vamvounis, Org. Prep. Proced. Int. 2015, 47, 385.
| Crossref | GoogleScholarGoogle Scholar |