Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Gold-Catalysed Oxidative Cycloisomerisation of 1,6-Diyne Acetates to 1-Naphthyl Ketones

Andrew Thomas Holm A , Sanatan Nayak A and Philip Wai Hong Chan A B C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

C Corresponding author. Email: phil.chan@monash.edu

Australian Journal of Chemistry 72(11) 881-889 https://doi.org/10.1071/CH19330
Submitted: 16 July 2019  Accepted: 27 August 2019   Published: 14 October 2019

Abstract

A synthetic method to prepare 1-naphthyl ketones from gold(i)-catalysed oxidative cycloisomerisation of 1,6-diyne acetates is described. The proposed mechanism involves cyclopropenation–cycloreversion of the 1,6-diyne motif initiated by a 1,2-acyloxy migration. This is followed by nucleophilic attack of the ensuing gold carbenoid species by a molecule of water and autoxidation to give the aromatic product.


References

[1]  For selected reviews on gold catalysis, see refs [2–10].

[2]  K. Holzschneider, S. F. Kirsch, Isr. J. Chem. 2018, 58, 596.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Wei, M. Shi, ACS Catal. 2016, 6, 2515.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331.
         | Crossref | GoogleScholarGoogle Scholar | 26673389PubMed |

[5]  R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
         | Crossref | GoogleScholarGoogle Scholar | 25844920PubMed |

[6]  Gold Catalysis: A Homogeneous Approach (Eds F. D. Toste, V. Michelet) 2014 (Imperial College Press: London).

[7]  A. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Modern Gold-Catalyzed Synthesis (Eds A. S. K. Hashmi, F. D. Toste) 2012 (Wiley-VCH: Weinheim).

[9]  F. Miege, C. Meyer, J. Cossy, Beilstein J. Org. Chem. 2011, 7, 717.
         | Crossref | GoogleScholarGoogle Scholar | 21804867PubMed |

[10]  A. Fürstner, Chem. Soc. Rev. 2009, 38, 3208.
         | Crossref | GoogleScholarGoogle Scholar | 19847352PubMed |

[11]  For selected reviews on gold-catalysed cyclisation of propargyl esters, see refs [12–17].

[12]  A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471.
         | Crossref | GoogleScholarGoogle Scholar | 27385433PubMed |

[13]  D. P. Day, P. W. H. Chan, Adv. Synth. Catal. 2016, 358, 1368.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953.
         | Crossref | GoogleScholarGoogle Scholar | 24564512PubMed |

[15]  B. J. Ayers, P. W. H. Chan, Synlett 2015, 1305.

[16]  A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.
         | Crossref | GoogleScholarGoogle Scholar | 18636778PubMed |

[18]  For selected recent examples of gold-catalysed carbocyclic synthesis, see refs [19–29].

[19]  M. Mathiew, J. K. Tan, P. W. H. Chan, Angew. Chem. Int. Ed. 2018, 57, 14235.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  P. T. Bohan, F. D. Toste, J. Am. Chem. Soc. 2017, 139, 11016.
         | Crossref | GoogleScholarGoogle Scholar | 28771334PubMed |

[21]  S. K. Thummanapelli, S. Hosseyni, Y. Su, N. G. Akhmedov, X. Shi, Chem. Commun. 2016, 7687.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  W. Rao, J. W. Boyle, P. W. H. Chan, Chem. – Eur. J. 2016, 22, 6532.
         | Crossref | GoogleScholarGoogle Scholar | 26945940PubMed |

[23]  X. Chen, D. P. Day, W. T. Teo, P. W. H. Chan, Org. Lett. 2016, 18, 5936.
         | Crossref | GoogleScholarGoogle Scholar | 27791382PubMed |

[24]  E. Rettenmeier, M. M. Hansmann, A. Ahrens, K. Rubenacker, T. Saboo, J. Massholder, C. Meier, M. Rudolph, F. Rominger, A. S. Hashmi, Chem. – Eur. J. 2015, 21, 14401.
         | Crossref | GoogleScholarGoogle Scholar | 26291466PubMed |

[25]  W. Rao, D. Susanti, B. J. Ayers, P. W. H. Chan, J. Am. Chem. Soc. 2015, 137, 6350.
         | Crossref | GoogleScholarGoogle Scholar | 25905645PubMed |

[26]  J. Yan, G. L. Tay, C. Neo, B. R. Lee, P. W. H. Chan, Org. Lett. 2015, 17, 4176.
         | Crossref | GoogleScholarGoogle Scholar | 26291118PubMed |

[27]  W. Zi, H. Wu, F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3225.
         | Crossref | GoogleScholarGoogle Scholar | 25710515PubMed |

[28]  W. Rao, M. J. Koh, D. Li, H. Hirao, P. W. H. Chan, J. Am. Chem. Soc. 2013, 135, 7926.
         | Crossref | GoogleScholarGoogle Scholar | 23627597PubMed |

[29]  T. Lauterbach, S. Gatzweiler, P. Nösel, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv. Synth. Catal. 2013, 355, 2481.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  For selected examples of gold-catalysed heterocyclic synthesis, see refs [21], [26] and [31–46].

[31]  X. Cheng, Z. Wang, C. D. Quintanilla, L. Zhang, J. Am. Chem. Soc. 2019, 141, 3787.
         | Crossref | GoogleScholarGoogle Scholar | 30789268PubMed |

[32]  M. Bao, X. Wang, L. Qiu, W. Hu, P. W. H. Chan, X. Xu, Org. Lett. 2019, 21, 1813.
         | Crossref | GoogleScholarGoogle Scholar | 30840467PubMed |

[33]  D. Allegue, J. González, S. Fernández, J. Santamaría, A. Ballesteros, Adv. Synth. Catal. 2019, 361, 758.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  M. E. Muratore, A. I. Konovalov, H. Armengol-Relats, A. M. Echavarren, Chem. – Eur. J. 2018, 24, 15613.
         | Crossref | GoogleScholarGoogle Scholar | 30066978PubMed |

[35]  J. Zhao, W. Xu, X. Xie, N. Sun, X. Li, Y. Liu, Org. Lett. 2018, 20, 5461.
         | Crossref | GoogleScholarGoogle Scholar | 30102048PubMed |

[36]  J. Jin, Y. Zhao, E. M. L. Sze, P. Kothandaraman, P. W. H. Chan, Adv. Synth. Catal. 2018, 360, 4744.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  Y.-C. Hsu, S.-A. Hsieh, P.-H. Li, R.-S. Liu, Chem. Commun. 2018, 2114.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  X. Chen, J. T. Merrett, P. W. H. Chan, Org. Lett. 2018, 20, 1542.
         | Crossref | GoogleScholarGoogle Scholar | 29481090PubMed |

[39]  B. Zhang, T. Wang, Z. Zhang, J. Org. Chem. 2017, 82, 11644.
         | Crossref | GoogleScholarGoogle Scholar | 28967246PubMed |

[40]  W. Rao, Sally, S. N. Berry, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 13174.
         | Crossref | GoogleScholarGoogle Scholar | 25113644PubMed |

[41]  W. Rao, P. W. H. Chan, Chem. – Eur. J. 2014, 20, 713.
         | Crossref | GoogleScholarGoogle Scholar | 24323953PubMed |

[42]  W. T. Teo, W. Rao, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 7508.
         | Crossref | GoogleScholarGoogle Scholar | 23883133PubMed |

[43]  C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett. 2013, 15, 4234.
         | Crossref | GoogleScholarGoogle Scholar | 23909764PubMed |

[44]  W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811.
         | Crossref | GoogleScholarGoogle Scholar | 22663059PubMed |

[45]  A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, Chem. – Eur. J. 2008, 14, 3703.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  A. S. K. Hashmi, M. Wölfle, F. Ata, M. Hamzic, R. Salathé, W. Frey, Adv. Synth. Catal. 2006, 348, 2501.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  For a review on the gold-catalysed chemistry of cyclopropenes, see ref. [9]. For selected examples, see refs [26], [28], [29], [41] and [48–54].

[48]  N. A. Rajabi, M. J. Atashgah, R. BabaAhmadi, C. Hyland, A. Ariafard, J. Org. Chem. 2013, 78, 9553.
         | Crossref | GoogleScholarGoogle Scholar | 23977881PubMed |

[49]  P. C. Young, M. S. Hadfield, L. Arrowsmith, K. M. Macleod, R. J. Mudd, J. A. Jordan-Hore, A.-L. Lee, Org. Lett. 2012, 14, 898.
         | Crossref | GoogleScholarGoogle Scholar | 22272604PubMed |

[50]  M. S. Hadfield, A. L. Lee, Chem. Commun. 2011, 1333.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  E. Seraya, E. Slack, A. Ariafard, B. F. Yates, C. J. T. Hyland, Org. Lett. 2010, 12, 4768.
         | Crossref | GoogleScholarGoogle Scholar | 20873827PubMed |

[52]  M. S. Hadfield, J. T. Bauer, P. E. Glen, A. L. Lee, Org. Biomol. Chem. 2010, 8, 4090.
         | Crossref | GoogleScholarGoogle Scholar | 20623054PubMed |

[53]  M. S. Hadfield, A. L. Lee, Org. Lett. 2010, 12, 484.
         | Crossref | GoogleScholarGoogle Scholar | 20050603PubMed |

[54]  J. T. Bauer, M. S. Hadfield, A. L. Lee, Chem. Commun. 2008, 6405.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  For recent reviews on the chemistry of cyclopropenes, see [56–58].

[56]  I. Marek, S. Simaan, A. Masarwa, Angew. Chem. Int. Ed. 2007, 46, 7364.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  M. Rubin, M. Rubina, V. Gevorgyan, Chem. Rev. 2007, 107, 3117.
         | Crossref | GoogleScholarGoogle Scholar | 17622181PubMed |

[58]  M. Rubin, M. Rubina, V. Gevorgyan, Synthesis 2006, 1221.

[59]  For precedence of water serving as the oxygen atom source, see refs [39], [45] and [46].