H2-Generation from Alcohols by the MOF-Based Noble Metal-Free Photocatalyst Ni/CdS/TiO2@MIL-101*
Dominic Tilgner A , Mara Klarner A , Sebastian Hammon B , Martin Friedrich A , Andreas Verch C D , Niels de Jonge C E , Stephan Kümmel B and Rhett Kempe A FA Inorganic Chemistry II, Catalyst Design, University of Bayreuth, Bayreuth 95440, Germany.
B Theoretical Physics IV, University of Bayreuth, Bayreuth 95440, Germany.
C INM – Leibniz Institute for New Materials, Saarbrücken 66123, Germany.
D Carl Zeiss AG, Oberkochen 73447, Germany.
E Department of Physics, Saarland University, Saarbrücken 66123, Germany.
F Corresponding author. Email: kempe@uni-bayreuth.de
Australian Journal of Chemistry 72(10) 842-847 https://doi.org/10.1071/CH19255
Submitted: 4 June 2019 Accepted: 22 July 2019 Published: 15 August 2019
Abstract
The synthesis of important classes of chemical compounds from alcohols helps to conserve Earth’s fossil carbon resources, since alcohols can be obtained from indigestible and abundantly available biomass. The utilisation of visible light for the activation of alcohols permits alcohol-based C–N and C–C bond formation under mild conditions inaccessible with thermally operating hydrogen liberation catalysts. Herein, we report on a noble metal-free photocatalyst able to split alcohols into hydrogen and carbonyl compounds under inert gas atmosphere without the requirement of electron donors, additives, or aqueous reaction media. The reusable photocatalyst mediates C–N multiple bond formation using the oxidation of alcohols and subsequent coupling with amines. The photocatalyst consists of a CdS/TiO2 heterojunction decorated with co-catalytic Ni nanoparticles and is prepared on size-optimised colloidal metal–organic framework (MOF) crystallites.
References
[1] C. Gunanathan, D. Milstein, Science 2013, 341, 1229712.| Crossref | GoogleScholarGoogle Scholar | 23869021PubMed |
[2] T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science 2010, 330, 1222.
| Crossref | GoogleScholarGoogle Scholar | 21109668PubMed |
[3] C. O. Tuck, E. Perez, I. T. Horvath, R. A. Sheldon, M. Poliakoff, Science 2012, 337, 695.
| Crossref | GoogleScholarGoogle Scholar | 22879509PubMed |
[4] S. Michlik, R. Kempe, Nat. Chem. 2013, 5, 140.
| Crossref | GoogleScholarGoogle Scholar | 23344449PubMed |
[5] (a) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew. Chem. Int. Ed. 2010, 49, 1468. [Angew. Chem. 2010, 122, 1510].
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Mukherjee, A. Nerush, G. Leitus, L. J. W. Shimon, Y. Ben David, N. A. Espinosa Jalapa, D. Milstein, J. Am. Chem. Soc. 2016, 138, 4298.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Pyrrole synthesis: D. Forberg, J. Obenauf, M. Friedrich, S. M. Hühne, W. Mader, G. Motz, R. Kempe, Catal. Sci. Technol. 2014, 4, 4188.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Kallmeier, B. Dudziec, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 7261.[Angew. Chem. 2017, 129, 7367].
| Crossref | GoogleScholarGoogle Scholar |
(c) For selected work of others see: D. Srimani, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2013, 52, 4012.[Angew. Chem. 2013, 125, 4104].
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Zhang, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 597.[Angew. Chem. 2013, 125, 625].
| Crossref | GoogleScholarGoogle Scholar |
(e) M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 2013, 135, 11384.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Pyridine synthesis: S. Michlik, R. Kempe, Angew. Chem. Int. Ed. 2013, 52, 6326.[Angew. Chem. 2013, 125, 6450].
| Crossref | GoogleScholarGoogle Scholar |
(b) T. Hille, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 371.[Angew. Chem. 2017, 129, 377].
| Crossref | GoogleScholarGoogle Scholar |
(c) For selected work of others see: D. Srimani, Y. Ben-David, D. Milstein, Chem. Commun. 2013, 49, 6632.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Pyrimidine synthesis: N. Deibl, K. Ament, R. Kempe, J. Am. Chem. Soc. 2015, 137, 12804.
| Crossref | GoogleScholarGoogle Scholar | 26414993PubMed |
(b) N. Deibl, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 1663.[Angew. Chem. 2017, 129, 1685].
| Crossref | GoogleScholarGoogle Scholar |
(c) For selected work of others see: M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, J. Am. Chem. Soc. 2016, 138, 15543.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) D. Forberg, T. Schwob, M. Zaheer, M. Friedrich, N. Miyajima, R. Kempe, Nat. Commun. 2016, 7, 13201.
| Crossref | GoogleScholarGoogle Scholar | 27762267PubMed |
(b) D. Forberg, T. Schwob, R. Kempe, Nat. Commun. 2018, 9, 1751.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) G. Zhang, S. K. Hanson, Org. Lett. 2013, 15, 650.
| Crossref | GoogleScholarGoogle Scholar | 23311959PubMed |
(b) J. Bain, P. Cho, A. Voutchkova-Kostal, Green Chem. 2015, 17, 2271.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Daw, S. Chakraborty, J. A. Garg, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2016, 55, 14373.[Angew. Chem. 2016, 128, 14585].
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Mastalir, M. Glatz, N. Gorgas, B. Stöger, E. Pittenauer, G. Allmaier, L. F. Veiros, K. Kirchner, Chem. – Eur. J. 2016, 22, 12316.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Parua, S. Das, R. Sikari, S. Sinha, N. D. Paul, J. Org. Chem. 2017, 82, 7165.
| Crossref | GoogleScholarGoogle Scholar |
[11] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, Science 2005, 309, 2040.
| Crossref | GoogleScholarGoogle Scholar | 16179475PubMed |
[12] (a) For examples of a TiO2/MIL-101 core-shell material see: D. Tilgner, R. Kempe, Chem. – Eur. J. 2017, 23, 3184.
| Crossref | GoogleScholarGoogle Scholar | 27992084PubMed |
(b) D. Tilgner, M. Friedrich, A. Verch, N. de Jonge, R. Kempe, ChemPhotoChem 2018, 2, 349.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) Y. Shiraishi, Y. Sugano, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2010, 49, 1656.
| Crossref | GoogleScholarGoogle Scholar |
(b) T. P. A. Ruberu, N. C. Nelson, I. I. Slowing, J. Vela, J. Phys. Chem. Lett. 2012, 3, 2798.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Mitkina, C. Stanglmair, W. Setzer, M. Gruber, H. Kisch, B. Konig, Org. Biomol. Chem. 2012, 10, 3556.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Chai, T.-T. Zeng, Q. Li, L.-Q. Lu, W.-J. Xiao, D. Xu, J. Am. Chem. Soc. 2016, 138, 10128.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Jiang, X. Chen, Z. Zhang, L. Zhang, Y. Wang, Z. Sun, R. M. Irfan, P. Du, J. Catal. 2018, 357, 147.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) W. Zhai, S. Xue, A. Zhu, Y. Luo, Y. Tian, ChemCatChem 2011, 3, 127.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Higashimoto, Y. Tanaka, R. Ishikawa, S. Hasegawa, M. Azuma, H. Ohue, Y. Sakata, Catal. Sci. Technol. 2013, 3, 400.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Liu, J. Caner, A. Kudo, H. Naka, S. Saito, Chem. – Eur. J. 2013, 19, 9452.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Tanaka, S. Sakaguchi, K. Hashimoto, H. Kominami, ACS Catal. 2013, 3, 79.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. Kasap, C. A. Caputo, B. C. M. Martindale, R. Godin, V. W.-h. Lau, B. V. Lotsch, J. R. Durrant, E. Reisner, J. Am. Chem. Soc. 2016, 138, 9183.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. M. Zhao, Q. Y. Meng, X. B. Fan, C. Ye, X. B. Li, B. Chen, V. Ramamurthy, C. H. Tung, L. Z. Wu, Angew. Chem. Int. Ed. 2017, 56, 3020.[Angew. Chem. 2017, 129, 3066].
| Crossref | GoogleScholarGoogle Scholar |
(g) G. Han, Y.-H. Jin, R. A. Burgess, N. E. Dickenson, X.-M. Cao, Y. Sun, J. Am. Chem. Soc. 2017, 139, 15584.
| Crossref | GoogleScholarGoogle Scholar |
[15] J. Hermannsdörfer, M. Friedrich, R. Kempe, Chem. – Eur. J. 2013, 19, 13652.
| Crossref | GoogleScholarGoogle Scholar | 24092537PubMed |
[16] (a) J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Chem. Commun. 2013, 49, 6761.
| Crossref | GoogleScholarGoogle Scholar |
(b) Y. Wang, Y. Zhang, Z. Jiang, G. Jiang, Z. Zhao, Q. Wu, Y. Liu, Q. Xu, A. Duan, C. Xu, Appl. Catal. B 2016, 185, 307.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Jiang, J. Liu, M. Gao, X. Fan, L. Zhang, J. Zhang, Adv. Mater. 2017, 29, 1603369.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) H. Gerischer, M. Lübke, J. Electroanal. Chem. 1986, 204, 225.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Spanhel, H. Weller, A. Henglein, J. Am. Chem. Soc. 1987, 109, 6632.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. R. Gopidas, M. Bohorquez, P. V. Kamat, J. Phys. Chem. 1990, 94, 6435.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Vogel, K. Pohl, H. Weller, Chem. Phys. Lett. 1990, 174, 241.
| Crossref | GoogleScholarGoogle Scholar |
(e) S. Kohtani, A. Kudo, T. Sakata, Chem. Phys. Lett. 1993, 206, 166.
| Crossref | GoogleScholarGoogle Scholar |
(f) R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem. 1994, 98, 3183.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. E. Evans, K. W. Springer, J. Z. Zhang, J. Chem. Phys. 1994, 101, 6222.
| Crossref | GoogleScholarGoogle Scholar |
(h) D. Baker, P. V. Kamat, Adv. Funct. Mater. 2009, 19, 805.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013.
| Crossref | GoogleScholarGoogle Scholar | 25087066PubMed |
(b) Y. Xu, R. Xu, Appl. Surf. Sci. 2015, 351, 779.
| Crossref | GoogleScholarGoogle Scholar |
[19] (a) R. Shi, Y. Cao, Y. Bao, Y. Zhao, G. I. N. Waterhouse, Z. Fang, L.-Z. Wu, C.-H. Tung, Y. Yin, T. Zhang, Adv. Mater. 2017, 29, 1700803.
| Crossref | GoogleScholarGoogle Scholar | 28497896PubMed |
(b) H. Zhao, X. Ding, B. Zhang, Y. Li, C. Wang, Sci. Bull. 2017, 62, 602.
| Crossref | GoogleScholarGoogle Scholar |
[20] Q. He, Y. Wang, Y. Zhang, H. Jiang, H. Liu, X. Zheng, S. Chen, X. Wu, L. Song, Sol. RRL 2018, 180032.
[21] (a) J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, Chem. Commun. 2013, 49, 6761.
| Crossref | GoogleScholarGoogle Scholar |
(b) L. Shang, B. Tong, H. Yu, G. I. N. Waterhouse, C. Zhou, Y. Zhao, M. Tahir, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater. 2016, 6, 1501241.
| Crossref | GoogleScholarGoogle Scholar |
[22] (a) A. Langenberg, K. Hirsch, A. Ławicki, V. Zamudio-Bayer, M. Niemeyer, P. Chmiela, B. Langbehn, A. Terasaki, B. v. Issendorff, J. T. Lau, Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 184420.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Meyer, M. Tomber, T. van Wüllen, G. Niedner-Schattenburg, S. Peredkob, W. Eberhardt, M. Neeb, S. Palutke, M. Martins, W. Wurth, J. Chem. Phys. 2015, 143, 104302.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. B. Knickelbein, J. Chem. Phys. 2002, 116, 9703.
| Crossref | GoogleScholarGoogle Scholar |
(d) S. E. Apsel, J. W. Emmert, J. Deng, L. A. Bloomfield, Phys. Rev. Lett. 1996, 76, 1441.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. J. Cox, J. G. Louderback, S. E. Apsel, L. A. Bloomfield, Phys. Rev. B Condens. Matter 1994, 49, 12295.
| Crossref | GoogleScholarGoogle Scholar |
[23] TURBMOLE V7.3 2018 (University of Karlsruhe and Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany).
[24] (a) C. J. Cramer, D. G. Truhlar, Phys. Chem. Chem. Phys. 2009, 11, 10757.
| Crossref | GoogleScholarGoogle Scholar | 19924312PubMed |
(b) L. Leppert, R. Kempe, S. Kümmel, Phys. Chem. Chem. Phys. 2015, 17, 26140.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Schmidt, S. Kümmel, Computation 2016, 4, 33.
| Crossref | GoogleScholarGoogle Scholar |