Polyacids as Modulators for the Synthesis of UiO-66
Kyle C. Bentz A , Sergio AyalaA Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
B Corresponding author. Email: scohen@ucsd.edu
Australian Journal of Chemistry 72(10) 848-851 https://doi.org/10.1071/CH19271
Submitted: 18 June 2019 Accepted: 6 August 2019 Published: 5 September 2019
Abstract
Poly(acrylic acid) (PAA) and poly(vinylbenzoic acid) (PBA) were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization and used as modulators for the synthesis of the metal–organic framework (MOF) UiO-66 (UiO = University of Oslo). Whereas typical syntheses of UiO-66 require large excesses of acid modulators, such as acetic acid or benzoic acid, to achieve controlled particle size and morphology of the resulting MOF particles, the use of polymerized acids allows for narrow particle size distributions at sub-stoichiometric quantities of modulator. We show using scanning electron microscopy and dynamic light scattering techniques that polyacids can act as alternative modulators for the growth of UiO-66.
References
[1] G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K. P. Lillerud, Chem. Mater. 2016, 28, 3749.| Crossref | GoogleScholarGoogle Scholar |
[2] W. Morris, S. Wang, D. Cho, E. Auyeung, P. Li, O. K. Farha, C. A. Mirkin, ACS Appl. Mater. Interfaces 2017, 9, 33413.
| Crossref | GoogleScholarGoogle Scholar | 28509530PubMed |
[3] D. Bradshaw, E.-H. Samir, L. Lupica-Spagnolo, Chem. Soc. Rev. 2014, 43, 5431.
| Crossref | GoogleScholarGoogle Scholar | 24811778PubMed |
[4] S. Ayala, K. C. Bentz, S. M. Cohen, Chem. Sci. 2019, 10, 1746.
| Crossref | GoogleScholarGoogle Scholar | 30842840PubMed |
[5] T. Uemura, Y. Hoshino, S. Kitagawa, K. Yoshida, S. Isoda, Chem. Mater. 2006, 18, 992.
| Crossref | GoogleScholarGoogle Scholar |
[6] M. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng, M. Eddaoudi, J. Am. Chem. Soc. 2012, 134, 13176.
| Crossref | GoogleScholarGoogle Scholar | 22812681PubMed |
[7] S. Wang, Y. Lv, Y. Yao, H. Yu, G. Lu, Inorg. Chem. Commun. 2018, 93, 56.
| Crossref | GoogleScholarGoogle Scholar |
[8] M.-H. Pham, G.-T. Vuong, F.-G. Fontaine, T.-O. Do, Cryst. Growth Des. 2012, 12, 1008.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Cao, G. Gody, W. Zhao, S. Perrier, X. Peng, C. Ducati, D. Zhao, A. K. Cheetham, Chem. Sci. 2013, 4, 3573.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. Hwang, T. Heil, M. Antonietti, B. V. K. J. Schmidt, J. Am. Chem. Soc. 2018, 140, 2947.
| Crossref | GoogleScholarGoogle Scholar | 29390606PubMed |
[11] T.-H. Chen, L. Wang, J. V. Trueblood, V. H. Grassian, S. M. Cohen, J. Am. Chem. Soc. 2016, 138, 9646.
| Crossref | GoogleScholarGoogle Scholar | 27400759PubMed |
[12] M. Rubio-Martinez, C. Avci-Camur, A. W. Thornton, I. Imaz, D. Maspoch, M. R. Hill, Chem. Soc. Rev. 2017, 46, 3453.
| Crossref | GoogleScholarGoogle Scholar | 28530737PubMed |
[13] A. Ranft, S. B. Betzler, F. Haase, B. V. Lotsch, CrystEngComm 2013, 15, 9296.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Lu, C. Cui, W. Zhang, Y. Liu, F. Huo, Chem. Asian J. 2013, 8, 69.
| Crossref | GoogleScholarGoogle Scholar | 23065843PubMed |
[15] K. C. Bentz, S. M. Cohen, Angew. Chem. Int. Ed. 2018, 57, 14992.
| Crossref | GoogleScholarGoogle Scholar |