Tuning Packing, Structural Flexibility, and Porosity in 2D Metal–Organic Frameworks by Metal Node Choice
Witold M. Bloch A B , Christian J. Doonan A and Christopher J. Sumby A BA Department of Chemistry and Centre for Advanced Nanomaterials, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
B Corresponding authors. Email: witold.bloch@adelaide.edu.au; christopher.sumby@adelaide.edu.au
Australian Journal of Chemistry 72(10) 797-804 https://doi.org/10.1071/CH19215
Submitted: 10 May 2019 Accepted: 12 June 2019 Published: 15 July 2019
Abstract
Understanding the key features that determine structural flexibility in metal–organic frameworks (MOFs) is key to exploiting their dynamic physical and chemical properties. We have previously reported a 2D MOF material, CuL1, comprising five-coordinate metal nodes that displays exceptional CO2/N2 selectively (L1 = bis(4-(4-carboxyphenyl)-1H-pyrazolyl)methane). Here we examine the effect of utilising six-coordinate metal centres (CoII and NiII) in the synthesis of isostructural MOFs from L1, namely CoL1 and NiL1. The octahedral geometry of the metal centre within the MOF analogues precludes an ideal eclipse of the 2D layers, resulting in an offset stacking, and in certain cases, the formation of 2-fold interpenetrated analogues β-CoL1 and β-NiL1. We used a combination of thermogravimetric analysis (TGA), and powder and single crystal X-ray diffraction (PXRD and SCXRD) to show that desolvation is accompanied by a structural change for NiL1, and complete removal of the coordinated H2O ligands results in a reduction in long-range order. The offset nature of the 2D layers in combination with the structural changes impedes the adsorption of meaningful quantities of gases (N2, CO2), highlighting the importance of a five-coordinate metal centre in achieving optimal pore accessibility for this family of flexible materials.
References
[1] B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1989, 111, 5962.| Crossref | GoogleScholarGoogle Scholar |
[2] B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546.
| Crossref | GoogleScholarGoogle Scholar |
[3] R. Robson, J. Chem. Soc., Dalton Trans. 2000, 3735.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 2016, 49, 483.
| Crossref | GoogleScholarGoogle Scholar | 26878085PubMed |
[5] H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
| Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |
[6] B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115.
| Crossref | GoogleScholarGoogle Scholar | 20450174PubMed |
[7] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724.
| Crossref | GoogleScholarGoogle Scholar | 22204561PubMed |
[8] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450.
| Crossref | GoogleScholarGoogle Scholar | 19384447PubMed |
[9] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011.
| Crossref | GoogleScholarGoogle Scholar | 24871268PubMed |
[10] R. Ricco, W. Liang, S. Li, J. J. Gassensmith, F. Caruso, C. J. Doonan, P. Falcaro, ACS Nano 2018, 12, 13.
| Crossref | GoogleScholarGoogle Scholar | 29309146PubMed |
[11] C. Doonan, R. Riccò, K. Liang, D. Bradshaw, P. Falcaro, Acc. Chem. Res. 2017, 50, 1423.
| Crossref | GoogleScholarGoogle Scholar | 28489346PubMed |
[12] K. Uemura, R. Matsuda, S. Kitagawa, J. Solid State Chem. 2005, 178, 2420.
| Crossref | GoogleScholarGoogle Scholar |
[13] S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490.
| Crossref | GoogleScholarGoogle Scholar |
[14] G. Ferey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380.
| Crossref | GoogleScholarGoogle Scholar | 19384443PubMed |
[15] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062.
| Crossref | GoogleScholarGoogle Scholar | 24875583PubMed |
[16] M.-H. Zeng, X.-L. Feng, X.-M. Chen, Dalton Trans. 2004, 2217.
| Crossref | GoogleScholarGoogle Scholar | 15278110PubMed |
[17] K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. Int. Ed. 2002, 41, 3395.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428.
| Crossref | GoogleScholarGoogle Scholar |
[19] D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota, T. C. Kobayashi, M. Takata, S. Kitagawa, Angew. Chem. 2008, 120, 3978.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) Most trellis-like structural transformations occur for defined layers within 3D MOFs where the layers are connected by metal ligand interactions through a bridging ligand. For reviews, see: W. Li, S. Henke, A. K. Cheetham, APL Mater. 2014, 2, 123902.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z.-J. Lin, J. Lü, M. Hong, R. Cao, Chem. Soc. Rev. 2014, 43, 5867.
| Crossref | GoogleScholarGoogle Scholar |
(c) F.-X. Coudert, Chem. Mater. 2015, 27, 1905.
| Crossref | GoogleScholarGoogle Scholar |
(d) In certain instances, where non-covalent secondary interactions stabilise the layer-layer contacts, trellis-like transformations can be observed: H.-L. Zhou, J.-P. Zhang, X.-M. Chen, Front. Chem. 2018, 6, 306.
| Crossref | GoogleScholarGoogle Scholar |
(e) W. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan, C. J. Sumby, J. Am. Chem. Soc. 2013, 135, 10441.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
| Crossref | GoogleScholarGoogle Scholar | 21124356PubMed |
[22] W. M. Bloch, C. J. Sumby, Chem. Commun. 2012, 48, 2534.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. M. Bloch, C. J. Sumby, Eur. J. Inorg. Chem. 2015, 3723.
| Crossref | GoogleScholarGoogle Scholar |
[24] A. Burgun, W. M. Bloch, C. J. Doonan, C. J. Sumby, Aust. J. Chem. 2017, 70, 566.
| Crossref | GoogleScholarGoogle Scholar |
[25] W. M. Bloch, C. J. Doonan, C. J. Sumby, CrystEngComm 2013, 15, 9663.
| Crossref | GoogleScholarGoogle Scholar |
[26] C. J. Coghlan, C. J. Sumby, C. J. Doonan, CrystEngComm 2014, 16, 6364.
| Crossref | GoogleScholarGoogle Scholar |
[27] O. M. Linder-Patton, C. J. Doonan, C. J. Sumby, J. Coord. Chem. 2016, 69, 1802.
| Crossref | GoogleScholarGoogle Scholar |
[28] O. M. Linder-Patton, W. M. Bloch, C. J. Coghlan, K. Sumida, S. Kitagawa, S. Furukawa, C. J. Doonan, C. J. Sumby, CrystEngComm 2016, 18, 4172.
| Crossref | GoogleScholarGoogle Scholar |
[29] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 25537608PubMed |
[30] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
| Crossref | GoogleScholarGoogle Scholar |
[31] G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
| Crossref | GoogleScholarGoogle Scholar |
[32] L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
| Crossref | GoogleScholarGoogle Scholar |
[33] O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010, 43, 1166.
| Crossref | GoogleScholarGoogle Scholar | 20608672PubMed |
[34] J. Zhang, L. Wojtas, R. W. Larsen, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2009, 131, 17040.
| Crossref | GoogleScholarGoogle Scholar | 19891485PubMed |
[35] R. H. Lee, E. Griswold, J. Kleinberg, Inorg. Chem. 1964, 3, 1278.
| Crossref | GoogleScholarGoogle Scholar |
[36] The material used for gas sorption studies (NiL1-ac) was prepared by heating a methanol exchanged sample at 260 °C for 1 h under vacuum.