Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterization of Zn-Carboxylate Metal–Organic Frameworks Containing Triazatruxene Ligands

Adil Alkaş A and Shane G. Telfer A B
+ Author Affiliations
- Author Affiliations

A MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.

B Corresponding author. Email: s.telfer@massey.ac.nz

Australian Journal of Chemistry 72(10) 786-796 https://doi.org/10.1071/CH19213
Submitted: 14 May 2019  Accepted: 7 June 2019   Published: 3 July 2019

Abstract

Reactions between triazatruxene-based tricarboxylate ligands, H3tat-R, and zinc nitrate under solvothermal conditions afforded new metal–organic frameworks (MOFs) with the general formula [Zn3(tat-R)2(H2O)2], MUF-tat-R (R = a hydrocarbon substituent on the triazatruxene nitrogen atoms). Single-crystal X-ray diffraction analysis revealed that these frameworks are 3D networks with a (10,3)-a topology. Linear trinuclear zinc clusters are connected to tat ligands to form chiral channels that accommodate the substituents on the tat ligands. MUF-tat and MUF-tat-benzyl crystallize in a cubic crystal system whereas MUF-tat-butyl and MUF-tat-hexyl are tetragonal. MUF-tat-benzyl retains its porosity on activation, which was confirmed by gas adsorption studies.


References

[1]  H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444.
         | Crossref | GoogleScholarGoogle Scholar | 23990564PubMed |

[2]  J. Zhang, S. Yao, S. Liu, B. Liu, X. Sun, B. Zheng, G. Li, Y. Li, Q. Huo, Y. Liu, Cryst. Growth Des. 2017, 17, 2131.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  Y. Wu, H. Chen, D. Liu, J. Xiao, Y. Qian, H. Xi, ACS Appl. Mater. Interfaces 2015, 7, 5775.
         | Crossref | GoogleScholarGoogle Scholar | 25700143PubMed |

[4]  A. Herbst, A. Khutia, C. Janiak, Inorg. Chem. 2014, 53, 7319.
         | Crossref | GoogleScholarGoogle Scholar | 25006999PubMed |

[5]  R. J. Marshall, Y. Kalinovskyy, S. L. Griffin, C. Wilson, B. A. Blight, R. S. Forgan, J. Am. Chem. Soc. 2017, 139, 6253.
         | Crossref | GoogleScholarGoogle Scholar | 28385019PubMed |

[6]  J. Cornelio, T.-Y. Zhou, A. Alkaş, S. G. Telfer, J. Am. Chem. Soc. 2018, 140, 15470.
         | Crossref | GoogleScholarGoogle Scholar | 30382705PubMed |

[7]  W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle, M. Bosch, H.-C. Zhou, Chem. Soc. Rev. 2014, 43, 5561.
         | Crossref | GoogleScholarGoogle Scholar | 24604071PubMed |

[8]  S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, D. Materials, G. Discovery, Nature 2004, 427, 523.
         | Crossref | GoogleScholarGoogle Scholar | 14765190PubMed |

[10]  Y.-B. Zhang, H. Furukawa, N. Ko, W. Nie, H. J. Park, S. Okajima, K. E. Cordova, H. Deng, J. Kim, O. M. Yaghi, J. Am. Chem. Soc. 2015, 137, 2641.
         | Crossref | GoogleScholarGoogle Scholar | 25646798PubMed |

[11]  T. J. Prior, M. J. Rosseinsky, Inorg. Chem. 2003, 42, 1564.
         | Crossref | GoogleScholarGoogle Scholar | 12611524PubMed |

[12]  C. J. Kepert, T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc. 2000, 122, 5158.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  B. F. Abrahams, P. A. Jackson, R. Robson, Angew. Chem. Int. Ed. 1998, 37, 2656.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. Peng, T. Gong, K. Zhang, X. Lin, Y. Liu, J. Jiang, Y. Cui, Nat. Commun. 2014, 5, 4406.
         | Crossref | GoogleScholarGoogle Scholar | 25030529PubMed |

[15]  J. Navarro-Sánchez, A. I. Argente-García, Y. Moliner-Martínez, D. Roca-Sanjuán, D. Antypov, P. Campíns-Falcó, M. J. Rosseinsky, C. Martí-Gastaldo, J. Am. Chem. Soc. 2017, 139, 4294.
         | Crossref | GoogleScholarGoogle Scholar | 28274119PubMed |

[16]  C. Zhu, Q. Xia, X. Chen, Y. Liu, X. Du, Y. Cui, ACS Catal. 2016, 6, 7590.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  D. Dang, P. Wu, C. He, Z. Xie, C. Duan, J. Am. Chem. Soc. 2010, 132, 14321.
         | Crossref | GoogleScholarGoogle Scholar | 20879732PubMed |

[18]  F. Song, C. Wang, J. M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 2010, 132, 15390.
         | Crossref | GoogleScholarGoogle Scholar | 20936862PubMed |

[19]  X. Huang, Q. Li, X. Xiao, S. Jia, Y. Li, Z. Duan, L. Bai, Z. Yuan, L. Li, Z. Lin, Y. Zhao, Inorg. Chem. 2018, 57, 6210.
         | Crossref | GoogleScholarGoogle Scholar | 29774746PubMed |

[20]  H. Furukawa, M. A. Miller, O. M. Yaghi, J. Mater. Chem. 2007, 17, 3197.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424.
         | Crossref | GoogleScholarGoogle Scholar | 20595583PubMed |

[22]  D. Zhao, D. J. Timmons, D. Yuan, H.-C. Zhou, Acc. Chem. Res. 2011, 44, 123.
         | Crossref | GoogleScholarGoogle Scholar | 21126015PubMed |

[23]  A. Alkaş, J. Cornelio, S. G. Telfer, Chem. Asian J. 2019, 14, 1167.
         | Crossref | GoogleScholarGoogle Scholar | 30499184PubMed |

[24]  R. A. Valentine, A. Whyte, K. Awaga, N. Robertson, Tetrahedron Lett. 2012, 53, 657.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  T. Techajaroonjit, S. Namuangruk, N. Prachumrak, V. Promarak, M. Sukwattanasinitt, P. Rashatasakhon, RSC Adv. 2016, 6, 56392.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. M. García-Frutos, B. Gómez-Lor, Á. Monge, E. Gutiérrez-Puebla, I. Alkorta, J. Elguero, Chem. – Eur. J. 2008, 14, 8555.
         | Crossref | GoogleScholarGoogle Scholar | 18680132PubMed |

[27]  J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J. Emge, J. Li, Adv. Mater. 2005, 17, 2703.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  D. Sun, Y. Ke, D. J. Collins, G. A. Lorigan, H.-C. Zhou, Inorg. Chem. 2007, 46, 2725.
         | Crossref | GoogleScholarGoogle Scholar | 17348646PubMed |

[29]  W. Chen, J.-Y. Wang, C. Chen, Q. Yue, H.-M. Yuan, J.-S. Chen, S.-N. Wang, Inorg. Chem. 2003, 42, 944.
         | Crossref | GoogleScholarGoogle Scholar | 12588123PubMed |

[30]  Y. Ke, D. J. Collins, D. Sun, H.-C. Zhou, Inorg. Chem. 2006, 45, 1897.
         | Crossref | GoogleScholarGoogle Scholar | 16499346PubMed |

[31]  F.-X. Gao, Y.-J. Ye, L.-T. Zhao, D.-H. Liu, Y. Li, Inorg. Chem. Commun. 2018, 94, 39.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  X.-M. Lin, T.-T. Li, Y.-W. Wang, L. Zhang, C.-Y. Su, Chem. Asian J. 2012, 7, 2796.
         | Crossref | GoogleScholarGoogle Scholar | 23038041PubMed |

[33]  T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, M. Haranczyk, Microporous Mesoporous Mater. 2012, 149, 134.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  S.-Y. Zhang, D. Li, D. Guo, H. Zhang, W. Shi, P. Cheng, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. 2015, 137, 15406.
         | Crossref | GoogleScholarGoogle Scholar | 26606156PubMed |

[36]  Q. Zhang, M. Lei, F. Kong, Y. Yang, Chem. Commun. 2018, 10901.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  S. Parshamoni, S. Sanda, H. S. Jena, S. Konar, Dalton Trans. 2014, 7191.
         | Crossref | GoogleScholarGoogle Scholar | 24676502PubMed |

[38]  S. Parshamoni, S. Sanda, H. S. Jena, S. Konar, Chem. Asian J. 2015, 10, 653.
         | Crossref | GoogleScholarGoogle Scholar | 25523149PubMed |

[39]  T. K. Maji, R. Matsuda, S. Kitagawa, Nat. Mater. 2007, 6, 142.
         | Crossref | GoogleScholarGoogle Scholar | 17259990PubMed |

[40]  A. M. Silvestre-Albero, J. M. Juárez-Galán, J. Silvestre-Albero, F. Rodríguez-Reinoso, J. Phys. Chem. C 2012, 116, 16652.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477.
         | Crossref | GoogleScholarGoogle Scholar | 19384449PubMed |

[42]  S. J. Geier, J. A. Mason, E. D. Bloch, W. L. Queen, M. R. Hudson, C. M. Brown, J. R. Long, Chem. Sci. 2013, 4, 2054.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  D. Wang, B. Liu, S. Yao, T. Wang, G. Li, Q. Huo, Y. Liu, Chem. Commun. 2015, 15287.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  FS Process 1996 (Rigaku Corporation: Tokyo).

[45]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3.
         | Crossref | GoogleScholarGoogle Scholar |