Three Manganese Complexes of Anionic N4-Donor Schiff-Base Macrocycles: Monomeric MnII and MnIII, and dimeric MnIV*
Rajni K. Wilson A , Sébastien Dhers A , Stephen Sproules B , Eric J. L. McInnes C and Sally Brooker A DA Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
B WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
C School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
D Corresponding author. Email: sbrooker@chemistry.otago.ac.nz
Australian Journal of Chemistry 72(10) 805-810 https://doi.org/10.1071/CH19209
Submitted: 10 May 2019 Accepted: 25 June 2019 Published: 26 July 2019
Abstract
Three manganese macrocyclic complexes of two anionic N4-donor [1 + 1] Schiff-base macrocycles that differ in ring size (14 versus 16 membered), HLEt and HLPr (obtained from condensation of diphenylamine-2,2′-dicarboxaldehyde and either diethylenetriamine or dipropylenetriamine), are reported. Specifically, a pair of monomeric complexes MnIILEt(NCS)(H2O) and [MnIIILPr(NCS)2]·0.5H2O, plus a dimeric complex [MnIV2LEt2(O)2](ClO4)2·3DMF have been synthesised and characterised. Single crystal structure determinations on [MnIIILPr(NCS)2]·0.5H2O and [MnIV2LEt2(O)2](ClO4)2·3DMF revealed octahedral manganese centres in both cases: N6-coordinated Jahn–Teller distorted MnIII in the former and a pair of N4O2-coordinated MnIV in the latter. UV-Vis, IR, and electron paramagnetic resonance spectroscopy as well as magnetic measurements are reported. These macrocyclic complexes feature a simple and original design, and could find future uses as models for manganese catalase or as building blocks for the assembly of larger supramolecular architectures.
References
[1] L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes 1990 (Cambridge University Press: Cambridge).[2] N. V. Gerbeleu, V. B. Arion, J. Burgess, Template Synthesis of Macrocyclic Compounds 1999 (Wiley-VCH: Weinheim).
[3] A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt, Handbook of Metalloproteins, Vol. 1 2001 (John Wiley and Sons, Ltd: Chichester).
[4] K. M. Smith, Porphyrins and Metalloporphyrins 1976 (Elsevier/North-Holland Biomedical Press: New York, NY).
[5] A. I. Scott, Acc. Chem. Res. 1978, 11, 29.
| Crossref | GoogleScholarGoogle Scholar |
[6] See pp. 1–28 in: E. J. Larson, V. L. Pecoraro, Manganese Redox Enzymes 1992 (VCH: New York, NY).
[7] V. V. Barynin, M. M. Whittaker, S. V. Antonyuk, V. S. Lamzin, P. M. Harrison, P. J. Artymiuk, J. W. Whittaker, Structure 2001, 9, 725.
| Crossref | GoogleScholarGoogle Scholar | 11587647PubMed |
[8] N. N. Gerasimchuk, A. Gerges, T. Clifford, A. Danby, K. Bowman-James, Inorg. Chem. 1999, 38, 5633.
| Crossref | GoogleScholarGoogle Scholar | 11671294PubMed |
[9] U. F. Lingappa, D. R. Monteverde, J. S. Magyar, J. S. Valentine, W. W. Fischer, Free Radic. Biol. Med. 2019, in press.
| 30738765PubMed |
[10] R. O. Costa, S. S. Ferreira, C. A. Pereira, J. R. Harmer, C. J. Noble, G. Schenk, R. W. A. Franco, J. A. L. C. Resende, P. Comba, A. E. Roberts, C. Fernandes, A. Horn, Front Chem. 2018, 6, 491.
| 30456211PubMed |
[11] R. D. Britt, D. L. M. Suess, T. A. Stich, Proc. Natl. Acad. Sci. USA 2015, 112, 5265.
| Crossref | GoogleScholarGoogle Scholar | 25883270PubMed |
[12] J. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175.
| Crossref | GoogleScholarGoogle Scholar | 24684576PubMed |
[13] E. Y. Tsui, J. S. Kanady, T. Agapie, Inorg. Chem. 2013, 52, 13833.
| Crossref | GoogleScholarGoogle Scholar | 24328344PubMed |
[14] G. N. Ledesma, H. Eury, E. Anxolabéhère-Mallart, C. Hureau, S. R. Signorella, J. Inorg. Biochem. 2015, 146, 69.
| Crossref | GoogleScholarGoogle Scholar | 25771435PubMed |
[15] W.-T. Lee, S. B. Muñoz, D. A. Dickie, J. M. Smith, Angew. Chem. Int. Ed. 2014, 53, 9856.
| Crossref | GoogleScholarGoogle Scholar |
[16] K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831.
| Crossref | GoogleScholarGoogle Scholar | 14764885PubMed |
[17] S. Mukhopadhyay, S. K. Mandal, S. Bhaduri, W. H. Armstrong, Chem. Rev. 2004, 104, 3981.
| Crossref | GoogleScholarGoogle Scholar | 15352784PubMed |
[18] J. Glerup, P. A. Goodson, A. Hazell, R. Hazell, D. J. Hodgson, C. J. McKenzie, K. Michelsen, U. Rychlewska, H. Toftlund, Inorg. Chem. 1994, 33, 4105.
| Crossref | GoogleScholarGoogle Scholar |
[19] C. Philouze, G. Blondin, J.-J. Girerd, J. Guilhem, C. Pascard, D. Lexa, J. Am. Chem. Soc. 1994, 116, 8557.
| Crossref | GoogleScholarGoogle Scholar |
[20] S. Pal, W. H. Armstrong, Inorg. Chem. 1992, 31, 5417.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Mukhopadhyay, R. J. Staples, W. H. Armstrong, Chem. Commun. 2002, 864.
| Crossref | GoogleScholarGoogle Scholar |
[22] E. S. Koumousi, S. Mukherjee, C. M. Beavers, S. J. Teat, G. Christou, T. C. Stamatatos, Chem. Commun. 2011, 47, 11128.
| Crossref | GoogleScholarGoogle Scholar |
[23] R. K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M. H. Cheah, C. Glover, W. H. Casey, L. Spiccia, Nat. Chem. 2011, 3, 461.
| Crossref | GoogleScholarGoogle Scholar | 21602861PubMed |
[24] M. Yagi, M. Toda, S. Yamada, H. Yamazaki, Chem. Commun. 2010, 46, 8594.
| Crossref | GoogleScholarGoogle Scholar |
[25] S. Brooker, V. McKee, W. B. Shepard, L. K. Pannell, J. Chem. Soc., Dalton Trans. 1987, 2555.
| Crossref | GoogleScholarGoogle Scholar |
[26] K. Wieghardt, U. Bossek, W. Gebert, Angew. Chem. Int. Ed. Engl. 1983, 22, 328.
| Crossref | GoogleScholarGoogle Scholar |
[27] V. McKee, Adv. Inorg. Chem. 1993, 40, 323.
[28] N. F. Curtis, D. A. House, Chem. Ind. 1961, 1708.
[29] N. F. Curtis, Supramol. Chem. 2012, 24, 439.
| Crossref | GoogleScholarGoogle Scholar |
[30] N. H. Pilkington, R. Robson, Aust. J. Chem. 1970, 23, 2225.
[31] R. Sanyal, S. A. Cameron, S. Brooker, Dalton Trans. 2011, 40, 12277.
| Crossref | GoogleScholarGoogle Scholar | 21909566PubMed |
[32] R. K. Wilson, S. Brooker, Dalton Trans. 2013, 42, 7913.
| Crossref | GoogleScholarGoogle Scholar | 23400271PubMed |
[33] R. K. Wilson, S. Brooker, Dalton Trans. 2013, 42, 12075.
| Crossref | GoogleScholarGoogle Scholar | 23860587PubMed |
[34] D. S. C. Black, N. E. Rothnie, Aust. J. Chem. 1983, 36, 2395.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. G. Małecki, B. Machura, A. Świtlicka, T. Groń, M. Bałanda, Polyhedron 2011, 30, 746.
| Crossref | GoogleScholarGoogle Scholar |
[36] J. Krzystek, J. Telser, L. A. Pardi, D. P. Goldberg, B. M. Hoffman, L.-C. Brunel, Inorg. Chem. 1999, 38, 6121.
| Crossref | GoogleScholarGoogle Scholar | 11671322PubMed |
[37] G. Aromí, J. Telser, A. Ozarowski, L.-C. Brunel, H.-M. Stoeckli-Evans, J. Krzystek, Inorg. Chem. 2005, 44, 187.
| Crossref | GoogleScholarGoogle Scholar | 15651863PubMed |
[38] C. Duboc, D. Ganyushin, K. Sivalingam, M.-N. Collomb, F. Neese, J. Phys. Chem. A 2010, 114, 10750.
| Crossref | GoogleScholarGoogle Scholar | 20828179PubMed |
[39] M. Stebler, A. Ludi, H. B. Bürgi, Inorg. Chem. 1986, 25, 4743.
| Crossref | GoogleScholarGoogle Scholar |
[40] P. A. Goodson, J. Glerup, D. J. Hodgson, K. Michelsen, E. Pedersen, Inorg. Chem. 1990, 29, 503.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. R. Oki, J. Glerup, D. J. Hodgson, Inorg. Chem. 1990, 29, 2435.
| Crossref | GoogleScholarGoogle Scholar |
[42] P. A. Goodson, J. Glerup, D. J. Hodgson, K. Michelsen, H. Weihe, Inorg. Chem. 1991, 30, 4909.
| Crossref | GoogleScholarGoogle Scholar |
[43] T. Yatabe, M. Kikkawa, T. Matsumoto, H. Nakai, K. Kaneko, S. Ogo, Dalton Trans. 2014, 43, 3063.
| Crossref | GoogleScholarGoogle Scholar | 24323354PubMed |
[44] P. A. Goodson, D. J. Hodgson, Inorg. Chem. 1989, 28, 3606.
| Crossref | GoogleScholarGoogle Scholar |
[45] K. J. Brewer, M. Calvin, R. S. Lumpkin, J. W. Otvos, L. O. Spreer, Inorg. Chem. 1989, 28, 4446.
| Crossref | GoogleScholarGoogle Scholar |
[46] G. R. Hanson, K. E. Gates, C. J. Noble, M. Griffin, A. Mitchell, S. Benson, J. Inorg. Biochem. 2004, 98, 903.
| Crossref | GoogleScholarGoogle Scholar | 15134936PubMed |