Nanocement Produced from Borosilicate Bioactive Glass Nanoparticles Composited with Alginate
Xin Xie A , Libin Pang A , Aihua Yao A , Song Ye A and Deping Wang A BA School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
B Corresponding author. Email: wdpshk@tongji.edu.cn
Australian Journal of Chemistry 72(5) 354-361 https://doi.org/10.1071/CH18410
Submitted: 5 September 2018 Accepted: 6 January 2019 Published: 5 February 2019
Abstract
A novel injectable bone cement was prepared using sol–gel derived borosilicate bioactive glass nanoparticles as a solid phase and sodium alginate solution as a liquid phase. The gelation reaction of the alginate was modulated by Ca2+ ions released from the borosilicate glass phase, which in turn greatly depended on the boron content of the borosilicate glass phase. Such a gelation reaction not only significantly enhanced the anti-washout property of the bone cements, but also allowed control of the setting, handling properties, and compressive strength of the composite bone cements. Consequently, bone cements with controllable performances can be developed by simply adjusting the B2O3/SiO2 ratio of the borosilicate glass phase. Borosilicate bioactive glass with 20–30 mol-% borate contents exhibit a short setting time, good compressive strength, injectability, and anti-washout properties. With controllable performances and excellent bioactivity, the borosilicate bioactive glass/sodium alginate (BSBG/SA) composite bone cements are highly attractive for bone filling and regeneration applications.
References
[1] H. G. Willert, K. Mueller, M. Semlitsch, Arch. Orthop. Traumat. Surg. 1979, 94, 265.| Crossref | GoogleScholarGoogle Scholar |
[2] M. S. Kang, N.-H. Lee, R. K. Singh, N Mandakhbayar, R. A. Perez, J.-H. Lee, H.-W. Kim, Biomaterials 2018, 162, 183.
| Crossref | GoogleScholarGoogle Scholar | 29448144PubMed |
[3] X. Zhang, D. Zeng, N. Li, X. Jiang, C. Liu, Y. Li, J. Mater. Chem. B 2016, 4, 3916.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Hoppe, N. S. Güldal, A. R. Boccaccini, Biomaterials 2011, 32, 2757.
| Crossref | GoogleScholarGoogle Scholar | 21292319PubMed |
[5] G. Luo, Y. Ma, X. Cui, L. Jiang, M. Wu, Y. Hu, Y. Luo, H. Pana, C. Ruan, RSC Adv. 2017, 7, 11880.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. Cui, Y. Zhang, H. Wang, Y. Gu, L. Li, J. Zhou, S. Zhao, W. Huang, N. Zhou, D. Wang, H. Pan, M. N. Rahaman, J. Non-Cryst. Solids 2016, 432, 150.
| Crossref | GoogleScholarGoogle Scholar |
[7] X. Cui, C. Zhao, Y. Gu, L. Li, H. Wang, W. Huang, N. Zhou, D. Wang, Y. Zhu, J. Xu, S. Luo, C. Zhang, M. N. Rahaman, J. Mater. Sci. Mater. Med. 2014, 25, 733.
| Crossref | GoogleScholarGoogle Scholar | 24477872PubMed |
[8] W. Huang, D. Day, K. Kittiratanapiboon, M. Rahaman, J. Mater. Sci. Mater. Med. 2006, 17, 583.
| Crossref | GoogleScholarGoogle Scholar | 16770542PubMed |
[9] W. Huang, M. Rahaman, D. Day, Ceram. Eng. Sci. Proc. 2007, 27, 131.
| Crossref | GoogleScholarGoogle Scholar |
[10] Q. Fu, M. N. Rahaman, B. S. Bal, L. F. Bonewald, K Kuroki, R. F. Brown, J. Biomed. Mater. Res. 2010, 95A, 172.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. B. Jung, D. E. Day, R. F. Brown, L. F. Bonewald, Ceram. Eng. Sci. Proc. 2012, 33, 6.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. E. Olson, J. T. Richtsmeier, J. Leszl, R. H. Reeves, Science 2004, 306, 687.
| Crossref | GoogleScholarGoogle Scholar | 15499018PubMed |
[13] C. Chen, C. Wang, N. S. Hsueh, S. J. Ding, J. Alloys Compd. 2014, 585, 25.
| Crossref | GoogleScholarGoogle Scholar |
[14] U. Gbureck, J. E. Barralet, K. Spatz, L. M. Grover, R. Thull, Biomaterials 2004, 25, 2187.
| Crossref | GoogleScholarGoogle Scholar | 14741634PubMed |
[15] R. O’Neill, H. O. McCarthy, E. B. Montufar, M.-P. Ginebra, D. I. Wilson, A. Lennon, N. Dunne, Acta Biomater. 2017, 50, 1.
| Crossref | GoogleScholarGoogle Scholar | 27838464PubMed |
[16] K. Y. Lee, D. J. Mooney, Prog. Polym. Sci. 2012, 37, 106.
| Crossref | GoogleScholarGoogle Scholar | 22125349PubMed |
[17] A. Yao, D. Wang, W. Huang, Q. Fu, M. N. Rahaman, D. E. Day, J. Am. Ceram. Soc. 2007, 90, 303.
| Crossref | GoogleScholarGoogle Scholar |
[18] Q. Fu, M. N. Rahaman, H. Fu, X. Liu, J. Biomed. Mater. Res. 2010, 95A, 164.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Han, Q. Zeng, H. Li, J. Chang, Acta Biomater. 2013, 9, 9107.
| Crossref | GoogleScholarGoogle Scholar | 23796407PubMed |
[20] M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, RSC Adv. 2017, 7, 23671.
| Crossref | GoogleScholarGoogle Scholar |
[21] J. Zhang, W. Liu, V. Schnitzler, F. Tancret, J. M. Bouler, Acta Biomater. 2014, 10, 1035.
| Crossref | GoogleScholarGoogle Scholar | 24231047PubMed |