Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Comparative Study of Different Electrochemical Techniques for the Preparation of Supported Pt-Ru Catalysts

Rodrigo M. Castagna A , Juan Manuel Sieben A B C , Andrea E. Alvarez A and Marta M. E. Duarte A
+ Author Affiliations
- Author Affiliations

A Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Universidad Nacional del Sur, Avenida Alem 1253, (B8000CPB) Bahía Blanca, Argentina.

B Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

C Corresponding author. Email: jmsieben@uns.edu.ar

Australian Journal of Chemistry 72(5) 347-353 https://doi.org/10.1071/CH18542
Submitted: 2 November 2018  Accepted: 22 December 2018   Published: 24 January 2019

Abstract

Bimetallic Pt-Ru particles supported on glassy carbon rods were synthesized by simultaneous electrochemical deposition. Pt-Ru alloy particles were deposited from a dilute aqueous acid solution of chloroplatinic acid and ruthenium trichloride by different electrochemical techniques: (i) coulostatic deposition at constant potential; (ii) double potentiostatic steps; and (iii) multiple cycles of potentiostatic pulses. It was found that particle size distribution, and the morphology and composition of the deposits strongly depend on the deposition method. Scanning electron microscopy images showed the presence of agglomerates with diameters in the submicrometre scale composed of nano-sized particles. The catalysts prepared by multiple cycles of potentiostatic pulses exhibited better activity for methanol oxidation and enhanced tolerance to CO poisoning compared with those prepared by the other techniques. This behaviour could be associated with the structure containing a high number of defects of the particles and a higher ruthenium content in the solid solution.


References

[1]  T. Iwasita, in Handbook of Fuel Cells – Fundamentals, Technology and Applications (Eds W. Vielstich, A. Lamm, H. A. Gasteiger) 2003, Vol. 2, pp. 603–624 (John Wiley & Sons: New York, NY).

[2]  P. Strasser, in Handbook of Fuel Cells – Fundamentals, Technology and Applications (Eds W. Vielstich, H. A. Gasteiger, H. Yokokawa) 2009, Vol. 5, pp. 30–47 (John Wiley & Sons: New York, NY).

[3]  M. Watanabe, S. Motoo, J. Electroanal. Chem. 1975, 60, 267.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. A. Gasteiger, N. M. Markovic, P. N. Ross, E. J. Cairns, J. Phys. Chem. 1993, 97, 12020.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  V. Di Noto, E. Negro, R. Gliubizzi, S. Lavina, G. Pace, S. Gross, C. Maccato, Adv. Funct. Mater. 2007, 17, 3626.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  C. R. K. Rao, D. C. Trivedi, Coord. Chem. Rev. 2005, 249, 613.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  C. Coutanceau, A. F. Rakotondrainibe, A. Lima, E. Garnier, S. Pronier, J.-M. Léger, C. Lamy, J. Appl. Electrochem. 2004, 34, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  Z. D. Wei, S. H. Chan, J. Electroanal. Chem. 2004, 569, 23.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Z. D. Wei, S. H. Chan, L. L. Li, H. F. Cai, Z. T. Xia, C. X. Sun, Electrochim. Acta 2005, 50, 2279.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. Shen, S. Roy, K. Scott, J. Appl. Electrochem. 2005, 35, 1103.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. M. E. Duarte, A. S. Pilla, J. M. Sieben, C. E. Mayer, Electrochem. Commun. 2006, 8, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  J. M. Sieben, M. M. E. Duarte, C. E. Mayer, Materia 2008, 13, 357.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  F. Maillard, F. Gloaguen, J.-M. Léger, J. Appl. Electrochem. 2003, 33, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  J. M. Sieben, M. M. E. Duarte, C. E. Mayer, J. Appl. Electrochem. 2008, 38, 483.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  F. J. Rodríguez-Nieto, T. Y. Morante-Catacora, C. R. Cabrera, J. Electroanal. Chem. 2004, 571, 15.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  T. Selvaraju, R. Ramaraj, J. Electroanal. Chem. 2005, 585, 290.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  J. L. Zubimendi, L. Vázquez, P. Ocón, J. M. Vara, W. E. Triaca, R. C. Salvarezza, A. J. Arvia, J. Phys. Chem. 1993, 97, 5095.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. N. Gavrilov, O. A. Petrii, A. A. Mukovnin, N. V. Smirnova, T. L. Levchenko, G. A. Tsirlina, Electrochim. Acta 2007, 52, 2775.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  L. M. Plyasova, I. Yu. Molina, S. V. Cherepanova, N. A. Rudina, O. V. Sherstyuk, E. R. Savinova, S. N. Pron’kin, G. A. Tsirlina, Russ. J. Electrochem. 2002, 38, 1116.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Vuković, D. Čukman, J. Electroanal. Chem. 1999, 474, 167.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Hadži-Jordanov, H. Argerstein, M. Vuković, B. E. Conway, J. Phys. Chem. 1977, 81, 2271.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. Hepel, F. H. Pollak, W. E. O’Grady, J. Electrochem. Soc. 1984, 131, 2094.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. M. Sieben, M. M. E. Duarte, C. E. Mayer, J. C. Bazán, J. Appl. Electrochem. 2009, 39, 1045.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  M. P. Hogarth, J. Munk, A. K. Shukla, A. Hammet, J. Appl. Electrochem. 1994, 24, 85.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. O’M. Bockris, S. U. M. Khan, in Surface Electrochemistry: A Molecular Level Approach (Eds J. O’M. Bockris, S. U. M. Khan) 1993, pp. 361–363 (Plenum Press: New York, NY).

[26]  L. M. Plyasova, I. Yu. Molina, A. N. Gavrilov, S. V. Cherepanova, O. V. Cherstiouk, N. A. Rudina, E. R. Savinova, G. A. Tsirlina, Electrochim. Acta 2006, 51, 4477.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  A. J. Bard, L. R. Faulkner, in Electrochemical Methods, Fundamentals and Applications, 2nd edn (Eds A. J. Bard, L. R. Faulkner) 2001, pp. 418–421 (John Wiley & Sons Inc.: New York, NY).

[28]  J. L. Zubimendi, G. Andreasen, W. E. Triaca, Electrochim. Acta 1995, 40, 1305.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  F. Gloaguen, J.-M. Léger, C. Lamy, A. Marmann, U. Stimming, R. Vogel, Electrochim. Acta 1999, 44, 1805.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, J. Phys. Chem. B 2004, 108, 8234.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. C. Deivaraj, J. Y. Lee, J. Power Sources 2005, 142, 43.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. N. Dinh, X. Ren, F. H. Garzon, P. Zelenay, S. Gottesfel, J. Electroanal. Chem. 2000, 491, 222.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P. Kulesza, J. Electroanal. Chem. 1999, 467, 143.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  O. V. Cherstiouk, A. N. Gavrilov, L. M. Plyasova, I. Yu Molina, G. A. Tsirlina, E. R. Savinova, J. Solid State Electrochem. 2008, 12, 497.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  H. Hoster, T. Iwasita, H. Baumgärtner, W. Vielstich, Phys. Chem. Chem. Phys. 2001, 3, 337.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  T. Iwasita, H. Hoster, A. John-Anaker, W. F. Lin, W. Vielstich, Langmuir 2000, 16, 522.
         | Crossref | GoogleScholarGoogle Scholar |