Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Aziridination and aza-Wharton Reactions of Levoglucosenone

Edward T. Ledingham A and Ben W. Greatrex A B C
+ Author Affiliations
- Author Affiliations

A School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.

B School of Rural Medicine, University of New England, Armidale, NSW 2351, Australia.

C Corresponding author. Email: ben.greatrex@une.edu.au

Australian Journal of Chemistry 72(5) 362-368 https://doi.org/10.1071/CH18574
Submitted: 19 November 2018  Accepted: 8 January 2019   Published: 6 February 2019

Abstract

Efficient conditions have been developed for the diastereoselective aziridination of the biomass pyrolysis product (−)-levoglucosenone, via the reaction of primary aliphatic amines with 3-iodolevoglucosenone. In contrast to the reactions of aliphatic amines, the use of 4-methoxyaniline resulted in an aza-Michael-initiated dimerisation reaction, and 1,3-diphenylurea gave a 2-imidazolidinone. The aziridine products were transformed using the aza-Wharton reaction, affording novel sulfonamide and amine-substituted 6,8-dioxabicyclo[3.2.1]oct-3-enes with potential as sp3-rich chiral scaffolds.


References

[1]  Y. Halpern, R. Riffer, A. Broido, J. Org. Chem. 1973, 38, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  A. M. Sarotti, R. A. Spanevello, A. G. Suárez, Green Chem. 2007, 9, 1137.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  B. W. Greatrex, J. Meisner, S. A. Glover, W. Raverty, J. Org. Chem. 2017, 82, 12294.
         | Crossref | GoogleScholarGoogle Scholar | 29064701PubMed |

[4]  S. Kudo, N. Goto, J. Sperry, K. Norinaga, J.-I. Hayashi, ACS Sustainable Chem. Eng. 2017, 5, 1132.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  M. B. Comba, Y.-h. Tsai, A. M. Sarotti, M. I. Mangione, A. G. Suárez, R. A. Spanevello, Eur. J. Org. Chem. 2018, 590.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. M. Sarotti, M. M. Zanardi, R. A. Spanevello, A. G. Suárez, Curr. Org. Synth. 2012, 9, 439.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  M. S. Miftakhov, I. N. Gaisina, F. A. Valeev, Russ. Chem. Rev. 1994, 63, 869.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  D. Urabe, T. Nishikawa, M. Isobe, Chem. Asian J. 2006, 1, 125.
         | Crossref | GoogleScholarGoogle Scholar | 17441047PubMed |

[9]  E. T. Ledingham, C. J. Merritt, C. J. Sumby, M. K. Taylor, B. W. Greatrex, Synthesis 2017, 2652.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  E. T. Ledingham, K. P. Stockton, B. W. Greatrex, Aust. J. Chem. 2017, 70, 1146.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  K. P. Stockton, B. W. Greatrex, Org. Biomol. Chem. 2016, 14, 7520.
         | Crossref | GoogleScholarGoogle Scholar | 27424764PubMed |

[12]  K. P. Stockton, C. J. Merritt, C. J. Sumby, B. W. Greatrex, Eur. J. Org. Chem. 2015, 6999.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  G. Bonneau, A. A. M. Peru, A. L. Flourat, F. Allais, Green Chem. 2018, 20, 2455.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  A. Flourat, A. Peru, A. Teixeira, F. Brunissen, F. Allais, Green Chem. 2015, 17, 404.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  X. Ma, X. Liu, P. Yates, W. Raverty, M. G. Banwell, C. Ma, A. C. Willis, P. D. Carr, Tetrahedron 2018, 74, 5000.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Z. J. Witczak, R. Bielski, D. E. Mencer, Tetrahedron Lett. 2017, 58, 4069.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  R. Hohol, H. Acrure, Z. J. Witczak, R. Bielski, K. Kirschbaum, P. Andreana, D. Mencer, Tetrahedron 2018, 74, 7303.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  L. Hughes, C. R. McElroy, A. C. Whitwood, A. J. Hunt, Green Chem. 2018, 20, 4423.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. E. Camp, ChemSusChem 2018, 11, 3048.
         | Crossref | GoogleScholarGoogle Scholar | 30044553PubMed |

[20]  J. Zhang, G. B. White, M. D. Ryan, A. J. Hunt, M. J. Katz, ACS Sustainable Chem. Eng. 2016, 4, 7186.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  J. Sherwood, M. De bruyn, A. Constantinou, L. Moity, C. R. McElroy, T. J. Farmer, T. Duncan, W. Raverty, A. J. Hunt, J. H. Clark, Chem. Commun. 2014, 9650.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  J. Klepp, C. J. Sumby, B. W. Greatrex, Synlett 2018, 1441.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. C. Forsyth, R. O. Gould, R. M. Paton, I. H. Sadler, I. Watt, J. Chem. Soc., Perkin Trans. 1 1993, 2737.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Y.-h. Tsai, C. M. Borini Etichetti, C. Di Benedetto, J. E. Girardini, F. T. Martins, R. A. Spanevello, A. G. Suárez, A. M. Sarotti, J. Org. Chem. 2018, 83, 3516.
         | Crossref | GoogleScholarGoogle Scholar | 29481076PubMed |

[25]  S.-W. Kim, E. T. Ledingham, S. Kudo, B. W. Greatrex, J. Sperry, Eur. J. Org. Chem. 2018, 2028.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  F. Eiden, F. Denk, G. Höfner, Arch. Pharm. 1994, 327, 405.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  J. K. Gallos, A. E. Koumbis, Curr. Org. Chem. 2003, 7, 397.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  G. G. Gerosa, R. A. Spanevello, A. G. Suárez, A. M. Sarotti, J. Org. Chem. 2015, 80, 7626.
         | Crossref | GoogleScholarGoogle Scholar | 26173931PubMed |

[29]  J. Chanet-Ray, J. Gelas, Y. Gelas-Mialhe, N. Tabbit, R. Vessiere, in Levoglucosenone and Levoglucosans: Chemistry and Applications (Ed. Z. J. Witczak) 1994, Vol 1, pp. 89–98 (ATL Press Inc., Science Publishers: Mt Prospect, IL).

[30]  C. D. Maycock, P. Rodrigues, M. R. Ventura, J. Org. Chem. 2014, 79, 1929.
         | Crossref | GoogleScholarGoogle Scholar | 24499021PubMed |

[31]  M. T. Barros, C. D. Maycock, M. R. Ventura, Tetrahedron Lett. 2002, 43, 4329.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. Silva, P. Rodrigues, I. Bento, C. D. Maycock, J. Org. Chem. 2015, 80, 3067.
         | Crossref | GoogleScholarGoogle Scholar | 25714507PubMed |

[33]  S. Silva, C. D. Maycock, Org. Chem. Front. 2017, 4, 236.
         | Crossref | GoogleScholarGoogle Scholar |

[34]  D. D. Ward, F. Shafizadeh, Carbohydr. Res. 1981, 93, 284.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  M. Bamba, T. Nishikawa, M. Isobe, Tetrahedron Lett. 1996, 37, 8199.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  F. G. Bordwell, D. Algrim, J. Org. Chem. 1976, 41, 2507.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  F. G. Bordwell, H. E. Fried, D. L. Hughes, T. Y. Lynch, A. V. Satish, Y. E. Whang, J. Org. Chem. 1990, 55, 3330.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  T. B. Grindley, A. Cude, J. Kralovic, R. Thangarasa, in Levoglucosenone and Levoglucosans: Chemistry and Applications (Ed. Z. J. Witczak) 1994, Vol 1, pp. 147–164 (ATL Press Inc., Science Publishers: Mt Prospect, IL).

[39]  A. Armstrong, R. D. C. Pullin, J. N. Scutt, Synlett 2016, 151.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  E. T. Ledingham, B. W. Greatrex, Tetrahedron 2018, 74, 6107.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  A. Armstrong, R. D. C. Pullin, C. R. Jenner, J. N. Scutt, J. Org. Chem. 2010, 75, 3499.
         | Crossref | GoogleScholarGoogle Scholar | 20465292PubMed |