Facile Preparation of Highly Luminescent Nitrogen-Doped Carbonaceous Nanospheres and Potential Application in Intracellular Imaging of Quercetin
Buhong Gao A , Yu Sun B , Yingchun Miao A , Huihua Min A , Li Xu B D and Chaobo Huang C DA Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China.
B College of Science, Nanjing Forestry University, Nanjing 210037, China.
C College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
D Corresponding authors. Email: xuliby@njfu.edu.cn; 1377655972@qq.com
Australian Journal of Chemistry 71(11) 882-889 https://doi.org/10.1071/CH18370
Submitted: 3 August 2018 Accepted: 13 September 2018 Published: 10 October 2018
Abstract
Highly luminescent nitrogen-doped carbonaceous nanospheres (LNCNs) were synthesized by a one-pot hydrothermal reaction of β-cyclodextrin (β-CD) and branched polyethylenimine (BPEI). Both the N-doping and amino-functionalisation of LNCNs were achieved simultaneously. The prepared LNCNs display excellent properties such as high physical and chemical stability, excitation wavelength-independent emission, and high photoluminescence quantum yields. Importantly, the LNCNs exhibit a quenching of photoluminescence in the presence of quercetin (Qc) based on the simple static quenching mechanism, making it possible to quantify concentrations from 0.5 to 80 μg mL−1 with a detection limit of 0.21 μg mL−1. Furthermore, the LNCNs probe was further used for imaging Qc in living cells.
References
[1] A. Beltran, F. Borrull, R. M. Marce, P. A. G. Cormack, TrAC, Trends Anal. Chem. 2010, 29, 1363.| Crossref | GoogleScholarGoogle Scholar |
[2] P. C. H. Hollman, I. C. M. Arts, J. Sci. Food Agric. 2000, 80, 1081.
| Crossref | GoogleScholarGoogle Scholar |
[3] K. S. Abdelkawy, M. E. Balyshev, F. Elbarbry, Biomed. Chromatogr. 2017, 31, e3819.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Numata, H. Tanaka, Food Chem. 2011, 126, 751.
| Crossref | GoogleScholarGoogle Scholar |
[5] L. Wang, M. E. Morris, J. Chromatogr. B 2005, 821, 194.
| Crossref | GoogleScholarGoogle Scholar |
[6] X. W. Kan, T. T. Zhang, M. Zhong, X. J. Lu, Biosens. Bioelectron. 2016, 77, 638.
| Crossref | GoogleScholarGoogle Scholar |
[7] M. L. Liu, L. Yang, R. S. Li, B. B. Chen, H. Liu, C. Z. Huang, Green Chem. 2017, 19, 3611.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. L. Liu, B. B. Chen, T. Yang, J. Wang, X. D. Liu, C. Z. Huang, Methods Appl. Fluoresc. 2017, 5, 153.
| Crossref | GoogleScholarGoogle Scholar |
[9] V. N. Mehta, S. Jha, R. K. Singhal, S. K. Kailasa, New J. Chem. 2014, 38, 6152.
| Crossref | GoogleScholarGoogle Scholar |
[10] V. N. Mehta, S. Jha, S. K. Kailasa, Mater. Sci. Eng. C 2014, 38, 20.
| Crossref | GoogleScholarGoogle Scholar |
[11] L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang, J. J. Zhu, Adv. Funct. Mater. 2012, 22, 2971.
| Crossref | GoogleScholarGoogle Scholar |
[12] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S.-Y. Xie, Y.-P. Sun, J. Am. Chem. Soc. 2007, 129, 11318.
| Crossref | GoogleScholarGoogle Scholar |
[13] Z. Yan, Z. Zhang, J. Chen, Sens. Actuators B 2016, 225, 469.
| Crossref | GoogleScholarGoogle Scholar |
[14] J. R. Bhamore, S. J. Rakesh, K. S. Suresh, K. Kailasa, J. Fluoresc. 2017, 27, 125.
| Crossref | GoogleScholarGoogle Scholar |
[15] V. N. Mehta, S. Jha, H. Basu, R. K. Singhal, S. K. Kailasa, Sens. Actuators B 2015, 213, 434.
| Crossref | GoogleScholarGoogle Scholar |
[16] H. Liu, T. Ye, C. Mao, Angew. Chem. Int. Ed. 2007, 119, 6593.
| Crossref | GoogleScholarGoogle Scholar |
[17] S. Y. Zou, C. J. Hou, H. B. Fa, L. Zhang, Y. Ma, L. Dong, D. Li, D. Q. Huo, M. Yang, Sens. Actuators B 2017, 239, 1033.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Park, J. Yoo, B. Lim, W. Kwon, S.-W. Rhee, J. Mater. Chem. A 2016, 4, 11582.
| Crossref | GoogleScholarGoogle Scholar |
[19] P. F. Shen, Y. R. Xia, Anal. Chem. 2014, 86, 5323.
| Crossref | GoogleScholarGoogle Scholar |
[20] Z. X. Wang, S. N. Ding, Anal. Chem. 2014, 86, 7436.
| Crossref | GoogleScholarGoogle Scholar |
[21] H. F. Wu, J. H. Jiang, X. T. Gu, C. L. Tong, Microchim. Acta 2017, 184, 2291.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. J. Liu, J. J. Zhao, Z. R. Huang, L. L. Zhang, M. B. Zou, B. F. Shi, S. L. Zhao, Sens. Actuators B 2017, 240, 604.
| Crossref | GoogleScholarGoogle Scholar |
[23] S. Kundu, R. M. Yadav, T. N. Narayanan, M. V. Shelke, R. Vajtai, P. M. Ajayan, V. K. Pillai, Nanoscale 2015, 7, 11515.
| Crossref | GoogleScholarGoogle Scholar |
[24] M. J. Liu, T. R. Zhang, H. X. Ren, L. Wang, T. J. Meng, J. C. Zhao, H. Wang, Y. F. Zhang, Mater. Res. Bull. 2018, 104, 15.
| Crossref | GoogleScholarGoogle Scholar |
[25] T. S. Atabaev, Z. L. Piao, A. Molkenova, J. Funct. Biomater. 2018, 9, 35.
| Crossref | GoogleScholarGoogle Scholar |
[26] B. Y. Han, L. Ying, T. T. Peng, M. B. Yu, X. X. Hu, G. H. He, Anal. Methods 2018, 10, 2989.
| Crossref | GoogleScholarGoogle Scholar |
[27] F. Qu, N. B. Li, H. Q. Luo, Langmuir 2013, 29, 1199.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Anal. Chem. 2012, 84, 6220.
| Crossref | GoogleScholarGoogle Scholar |
[29] B. H. Gao, F. Y. Zhao, Y. C. Miao, H. H. Min, L. Xu, C. B. Huang, RSC Adv. 2017, 7, 47654.
| Crossref | GoogleScholarGoogle Scholar |
[30] Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Chem. - Eur. J. 2014, 20, 2254.
| Crossref | GoogleScholarGoogle Scholar |
[31] Z. Y. Lin, S. F. Xue, Z. H. Chen, X. Y. Han, G. Shi, M. Zhang, Anal. Chem. 2018, 90, 8248.
| Crossref | GoogleScholarGoogle Scholar |
[32] S. L. Hu, K. Y. Niu, J. Sun, J. Yang, N. Q. Zhao, X. W. Du, J. Mater. Chem. 2009, 19, 484.
| Crossref | GoogleScholarGoogle Scholar |
[33] Y. Q. Dong, H. C. Pang, H. B. Yang, C. X. Guo, J. W. Shao, Y. W. Chi, C. M. Li, T. Yu, Angew. Chem. Int. Ed. 2013, 52, 7800.
| Crossref | GoogleScholarGoogle Scholar |
[34] S. J. Zhu, Q. N. Meng, L. Wang, J. H. Zhang, Y. B. Song, H. Jin, K. Zhang, H. C. Sun, H. Y. Wang, B. Yang, Angew. Chem. Int. Ed. 2013, 52, 3953.
| Crossref | GoogleScholarGoogle Scholar |
[35] J. Y. Li, Y. Liu, Q. W. Shu, J. M. Liang, F. Zhang, X. P. Chen, X. Y. Deng, M. T. Swihart, K. J. Tan, Langmuir 2017, 33, 1043.
| Crossref | GoogleScholarGoogle Scholar |
[36] H. T. Li, X. D. He, Z. H. Kang, H. Huang, Y. Liu, J. L. Liu, S. Y. Lian, C. H. A. Tsang, X. B. Yang, S.‐T. Lee, Angew. Chem. Int. Ed. 2010, 49, 4430.
| Crossref | GoogleScholarGoogle Scholar |
[37] S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al‐Youbi, X. Sun, Adv. Mater. 2012, 24, 2037.
| Crossref | GoogleScholarGoogle Scholar |
[38] D. D. Wu, Z. Chen, Luminescence 2014, 29, 307.
| Crossref | GoogleScholarGoogle Scholar |
[39] P. Ryan, M. J. Hynes, J. Inorg. Biochem. 2008, 102, 127.
| Crossref | GoogleScholarGoogle Scholar |