Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Fluorescent Chemosensor for Zn2+ Based on a C3-Symmetrical and Pre-Organized 2,2′,2″-Nitrilotribenzoic Acid Material

Wenguang Wei A B , Yao Jin A B , Tao Han A B , Bin Du A B C , Xiujuan Zhi A B , Chaojun Wei A B and Sichun Yuan A B C
+ Author Affiliations
- Author Affiliations

A Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Laboratory of Food Quality and Safety, Beijing 102206, China.

B Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China.

C Corresponding authors. Email: Bindu80@bua.edu.cn; ysc@bua.edu.cn

Australian Journal of Chemistry 71(11) 890-901 https://doi.org/10.1071/CH18308
Submitted: 5 July 2018  Accepted: 8 September 2018   Published: 11 October 2018

Abstract

A C3-symmetrical 4,4″,4⁗-nitrilotris(2′-methyl-[1,1′-biphenyl]-3-carboxylic acid) (4) derived from nitrilotriacetic acid (NTA) was found to selectively bind Zinc(ii) ions both in DMSO or MeOH. A synergistic effect of the anionic counter ion SO42− on the sensing behaviour of 4 to metal ions was clearly observed in DMSO. Interestingly, 4 showed a rapid hypochromatic shift in emission ascribed to the deprotonation and the concomitant formation of a 4–metal complex upon the addition of Zn2+ ions, instead of the bathochromic shift and emission enhancement attributed to the SO42−-involved hydrogen-bonding interaction for Ni2+, Li+, Mg2+, and Na+ ions at ratios below 1:1 in DMSO. The observed sensing process of sulfate salts associated with the SO42−-involved hydrogen-bonding interaction, deprotonation, and the concomitant complexation can also be clearly monitored by titration methods utilising UV-vis, fluorescence, and NMR spectroscopy in solution. In comparison with 4, compound 1 showed an obvious difference in the binding interaction with zinc sulfate in MeOH, probably owing to the decreased acidity. Anion-induced hydrogen-bonding interactions and deprotonation of the COOH protons in the excited state also endowed 4 versatile spectroscopic properties. The addition of F and SO42− anions resulted in a remarkable enhancement probably related with a rigidifying effect. 2,2′,2″-Nitrilotribenzoic acid can be utilised as a potential scaffold to build a series of conjugated fluorescent sensors by its chelation effect owing to the rigid cavity pre-organised by the triphenylamine moiety and the carboxylic groups and the conjugation extension in the 4,4′,4″ positions.


References

[1]  M. Kruppa, B. König, Chem. Rev. 2006, 106, 3520.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Mikata, K. Kawata, S. Iwatsuki, H. Konno, Inorg. Chem. 2012, 51, 1859.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  J. Klenc, M. Lipowska, P. L. Abhayawardhana, A. T. Taylor, L. G. Marzilli, Inorg. Chem. 2015, 54, 6281.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. S. Jullien, C. Gateau, I. Kieffer, D. Testemale, P. Delangle, Inorg. Chem. 2013, 52, 9954.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  V. Roullier, S. Clarke, C. J. You, F. Pinaud, G. Gouzer, D. Schaible, V. Marchi-Artzner, J. Piehler, M. Dahan, Nano Lett. 2009, 9, 1228.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  K. Peneva, G. Mihov, A. Herrmann, N. Zarrabi, M. Börsch, T. M. Duncan, K. Müllen, J. Am. Chem. Soc. 2008, 130, 5398.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  K. L. Cheng, Anal. Chem. 1958, 30, 1035.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  M. Gabričević, A. L. Crumbliss, Inorg. Chem. 2003, 42, 4098.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  X. Q. Lu, J. J. Jiang, C. L. Chen, B. S. Kang, C. Y. Su, Inorg. Chem. 2005, 44, 4515.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  S. J. Jeon, S. Y. Kwak, D. B. Yim, J. M. Ju, J. H. Kim, J. Am. Chem. Soc. 2014, 136, 10842.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. J. Zucchero, J. N. Wilson, U. H. F. Bunz, J. Am. Chem. Soc. 2006, 128, 11872.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  W. F. Li, H. C. Ma, Z. Q. Lei, RSC Adv. 2014, 4, 39351.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Y. D. Hang, J. Wang, T. Jiang, N. N. Lu, J. L. Hua, Anal. Chem. 2016, 88, 1696.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. Ghosh, G. Masanta, R. Fröhlich, I. D. Petsalakis, G. Theodorakopoulos, J. Phys. Chem. B 2009, 113, 7800.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. J. Yao, Y. Y. Fu, W. Xu, T. C. Fan, Y. X. Gao, Q. Q. He, D. F. Zhu, H. M. Cao, J. G. Cheng, Anal. Chem. 2016, 88, 2497.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  A. Chowdhury, P. S. Mukherjee, J. Org. Chem. 2015, 80, 4064.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. C. Ma, Z. W. Zhang, Y. Y. Jin, L. J. Zha, C. X. Qi, H. Y. Cao, Z. M. Yang, Z. W. Yang, Z. Q. Lei, RSC Adv. 2015, 5, 87157.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Z. Peng, X. H. Yi, Z. X. Liu, J. Shang, D. Y. Wang, ACS Appl. Mater. Interfaces 2016, 8, 14578.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  S. Wörl, D. Hellwinkel, H. Pritzkowa, R. Krämer, Chem. Commun. 2003, 2506.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  S. Wörl, I. O. Fritsky, D. Hellwinkel, H. Pritzkow, R. Krämer, Eur. J. Inorg. Chem. 2005, 759.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. J. Yuan, Y. L. Li, J. B. Li, C. H. Li, X. F. Liu, J. Lv, J. L. Xu, H. B. Liu, S. Wang, D. B. Zhu, Org. Lett. 2007, 9, 2313.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  S. Goswami, D. Sen, N. K. Das, Org. Lett. 2010, 12, 856.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  S. Mandal, S. Ghosh, C. Banerjee, J. Kuchlyan, N. Sarkar, J. Phys. Chem. B 2013, 117, 12212.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Y. Cui, H. J. Mo, J. C. Chen, Y. L. Niu, Y. R. Zhong, K. C. Zheng, B. H. Ye, Inorg. Chem. 2007, 46, 6427.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  P. Ashokkumar, V. T. Ramakrishnan, P. Ramamurthy, J. Phys. Chem. B 2011, 115, 84.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  P. Ashokkumar, V. T. Ramakrishnan, P. Ramamurthy, J. Phys. Chem. A 2011, 115, 14292.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  R. Wagner, W. Wan, M. Biyikal, E. Benito-Peña, M. Moreno-Bondi, I. Lazraq, K. Rurack, B. Sellergren, J. Org. Chem. 2013, 78, 1377.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  W. C. Lin, S. K. Fang, J. W. Hu, H. Y. Tsai, K. Y. Chen, Anal. Chem. 2014, 86, 4648.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  F. Zapata, A. Caballero, A. Espinosa, A. Tárraga, P. Molina, J. Org. Chem. 2008, 73, 4034.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  M. E. Moragues, R. Martinez-Máñez, F. Sancenón, Chem. Soc. Rev. 2011, 40, 2593.
         | Crossref | GoogleScholarGoogle Scholar |