Activation of Peroxymonosulfate by CuNi@C Derived from Metal–Organic Frameworks Precursor
Xue Huang A , Jing Zhang A B , Xiao Zhang A , Qing-Ping Wu A and Chun-Hui Yan AA College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China.
B Corresponding author. Email: zjing428@163.com
Australian Journal of Chemistry 71(11) 874-881 https://doi.org/10.1071/CH18260
Submitted: 30 May 2018 Accepted: 31 August 2018 Published: 25 September 2018
Abstract
Calcined Cu-based metal–organic frameworks impregnated with nickel nitrate catalysts (CuNi@C) were synthesised. X-Ray diffraction, scanning electronic microscopy, energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy techniques were applied for the characterisation of the synthesised catalyst, which revealed an octahedral particle shape, rough surface, and metallic copper (Cu, CuO) and nickel (Ni, NiO) particles. CuNi@C was fabricated as a novel peroxymonosulfate (PMS) activator for the oxidative degradation of Acid Orange 7 (AO7) in aqueous media. Results showed that the CuNi@C/PMS system can efficiently degrade nearly 100 % of 0.02 mmol L−1 AO7 within 60 min. In addition, the trapping experiments confirmed the participation of sulfate radicals (SO4•−) and hydroxyl radicals (HO•) as reactive species in the system. Furthermore, the effects of parameters including catalyst and PMS dosages, initial concentration of AO7, and pH were studied. Results showed that the decolourisation efficiency increased with the increase of catalyst dosage, but decreased with the increase of AO7 concentration. The optimal PMS concentration was 0.675 mmol L−1, and initial pH showed no significant effect on the degradation of AO7. Moreover, the CuNi@C could be reused four times with good activity and reusability. Findings revealed that the CuNi@C/PMS system shows potential for degrading contaminants in the environment, due to its catalytic activity and non-negligible adsorption.
References
[1] P. García-Muñoz, G. Pliego, J. A. Zazo, A. Bahamonde, J. A. Casas, J. Environ. Chem. Eng. 2016, 4, 542.| Crossref | GoogleScholarGoogle Scholar |
[2] W. Oh, Z. Dong, T. Lim, Appl. Catal. B 2016, 194, 169.
| Crossref | GoogleScholarGoogle Scholar |
[3] F. Liu, P. Yi, X. Wang, H. Gao, H. Zhang, Separ. Purif. Tech. 2018, 194, 181.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. He, A. A. de la Cruz, K. E. O’Shea, D. D. Dionysiou, Water Res. 2014, 63, 168.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76.
| Crossref | GoogleScholarGoogle Scholar |
[6] Q. Zhao, Q. Mao, Y. Zhou, J. Wei, X. Liu, J. Yang, L. Luo, J. Zhang, H. Chen, H. Chen, L. Tang, Chemosphere 2017, 189, 224.
| Crossref | GoogleScholarGoogle Scholar |
[7] J. Sun, R. A. L. Baylon, C. Liu, D. Mei, K. J. Martin, P. Venkitasubramanian, Y. Wang, J. Am. Chem. Soc. 2016, 138, 507.
| Crossref | GoogleScholarGoogle Scholar |
[8] J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R. S. Varma, Chem. Rev. 2017, 117, 1445.
| Crossref | GoogleScholarGoogle Scholar |
[9] C. Wang, J. Kang, P. Liang, H. Zhang, H. Sun, M. O. Tadé, S. Wang, Environ. Sci. Nano 2017, 4, 170.
| Crossref | GoogleScholarGoogle Scholar |
[10] S. Bao, Q. Wu, S. Chang, B. Tian, J. Zhang, Catal. Sci. Technol. 2017, 7, 124.
| Crossref | GoogleScholarGoogle Scholar |
[11] H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, J. Phys. Chem. C 2010, 114, 13362.
| Crossref | GoogleScholarGoogle Scholar |
[12] Y. Huang, Z. Lin, R. Cao, Chem. – Eur. J. 2011, 17, 12706.
| Crossref | GoogleScholarGoogle Scholar |
[13] Y. Wang, S. Sang, W. Zhu, L. Gao, G. Xiao, Chem. Eng. J. 2016, 299, 104.
| Crossref | GoogleScholarGoogle Scholar |
[14] H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, ACS Catal. 2015, 5, 5505.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Nagaraj, D. Amarajothi, J. Colloid Interface Sci. 2017, 494, 282.
| Crossref | GoogleScholarGoogle Scholar |
[16] S. H. Pang, N. E. Love, J. W. Medlin, J. Phys. Chem. Lett. 2014, 5, 4110.
| Crossref | GoogleScholarGoogle Scholar |
[17] F. Zhang, C. Chen, W. Xiao, L. Xu, N. Zhang, Catal. Commun. 2012, 26, 25.
| Crossref | GoogleScholarGoogle Scholar |
[18] D. F. Sava Gallis, M. V. Parkes, J. A. Greathouse, X. Zhang, T. M. Nenoff, Chem. Mater. 2015, 27, 2018.
| Crossref | GoogleScholarGoogle Scholar |
[19] H. Han, S. Chao, X. Yang, X. Wang, K. Wang, Z. Bai, L. Yang, Int. J. Hydrogen Energy 2017, 42, 16149.
| Crossref | GoogleScholarGoogle Scholar |
[20] J. Zhu, H. Yin, J. Gong, M. S. H. Al-Furjan, Q. Nie, J. Alloys Compd. 2018, 748, 145.
| Crossref | GoogleScholarGoogle Scholar |
[21] A. Mekki, D. Holland, C. F. McConville, J. Non-Cryst. Solids 1997, 215, 271.
| Crossref | GoogleScholarGoogle Scholar |
[22] X. Wang, Q. Kang, D. Li, Catal. Commun. 2008, 9, 2158.
| Crossref | GoogleScholarGoogle Scholar |
[23] J. Qin, M. Cao, N. Li, C. Hu, J. Mater. Chem. 2011, 21, 17167.
| Crossref | GoogleScholarGoogle Scholar |
[24] C. T. Wu, J. Qu, J. Elliott, K. M. Yu, S. C. Tsang, Phys. Chem. Chem. Phys. 2013, 15, 9043.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. Zhao, Y. Zhang, X. Quan, S. Chen, Separ. Purif. Tech. 2010, 71, 302.
| Crossref | GoogleScholarGoogle Scholar |
[26] Y. Ding, H. Tang, S. Zhang, S. Wang, H. Tang, J. Hazard. Mater. 2016, 317, 686.
| Crossref | GoogleScholarGoogle Scholar |
[27] G. P. Anipsitakis, D. D. Dionysiou, Environ. Sci. Technol. 2004, 38, 3705.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. Jorfi, B. Kakavandi, H. R. Motlagh, M. Ahmadi, N. Jaafarzadeh, Appl. Catal. B 2017, 219, 216.
| Crossref | GoogleScholarGoogle Scholar |
[29] F. Ghanbari, M. Moradi, Chem. Eng. J. 2017, 310, 41.
| Crossref | GoogleScholarGoogle Scholar |
[30] R. Yuan, L. Hu, P. Yu, H. Wang, Z. Wang, J. Fang, Chemosphere 2018, 198, 204.
| Crossref | GoogleScholarGoogle Scholar |
[31] W. Oh, Z. Dong, T. Lim, Appl. Catal. B 2016, 194, 169.
| Crossref | GoogleScholarGoogle Scholar |
[32] Y. Guan, J. Ma, Y. Ren, Y. Liu, J. Xiao, L. Lin, C. Zhang, Water Res. 2013, 47, 5431.
| Crossref | GoogleScholarGoogle Scholar |
[33] T. Zhang, H. Zhu, J. Croué, Environ. Sci. Technol. 2013, 47, 2784.
| Crossref | GoogleScholarGoogle Scholar |
[34] A. Tsitonaki, B. Petri, M. Crimi, H. Mosbaek, R. L. Siegrist, P. L. Bjerg, Crit. Rev. Environ. Sci. Technol. 2010, 40, 55.
| Crossref | GoogleScholarGoogle Scholar |