Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Rapid Determination of H2S Poisoning in a Forensic Study Using a Novel Fluorescence Assay Based on Zn/Cu@BSA Nanoclusters

Lagabaiyila Zha A C , Weicheng Duan A C , Di Wen B , Yadong Guo A , Jie Yan A , Yunfeng Chang A , Jifeng Cai A and Yanjun Ding A D
+ Author Affiliations
- Author Affiliations

A Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.

B Heibei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China.

C These authors contributed equally to this work.

D Corresponding author. Email: dingyanjun@csu.edu.cn

Australian Journal of Chemistry 71(3) 142-148 https://doi.org/10.1071/CH17470
Submitted: 18 August 2017  Accepted: 22 November 2017   Published: 5 January 2018

Abstract

The quantitative determination of H2S in the blood can provide valid evidence for H2S poisoning through occupational exposure. However, known traditional methods for the detection of H2S in blood are time consuming, require complicated pretreatments, and have low sensitivity. In this paper, a new fluorescence sensing assay is proposed for the rapid detection of H2S poisoning in forensic cases based on bovine serum albumin (BSA)-stabilised zinc/copper (Zn/Cu) bi-metal nanoclusters (Zn/Cu@BSA NCs). The as-prepared Zn/Cu@BSA NCs probes have been characterised by UV-vis absorption and fluorescence spectroscopy. The fluorescence of Zn/Cu@BSA NCs can be quenched through specific interactions between HS/S2− and the Zn2+/Cu2+ bi-metal ions. Under optimised conditions, the fluorescence sensing method was linear in the concentration range of 2.5 nM to 30 mM with 0.69 nM as the limit of detection. Moreover, the practical feasibility of this fluorescence sensing method has also been demonstrated by the analysis of mice blood samples containing different levels of sulfide and human blood samples from forensic cases of H2S poisoning. Compared with gas chromatography/mass spectrometry (GC/MS), this fluorescence sensing method is quite simple, straightforward, and can be accurate for the quantitative determination of H2S poisoning in a few minutes for forensic analysis. Overall, this is the first report of a bi-metal fluorescence sensing assay for detecting H2S poisoning directly in blood. This research may provide a new approach for forensic toxicologists to monitor poisoning by H2S using a fluorescence-sensing method.


References

[1]  S. Kage, H. Ikeda, N. Ikeda, A. Tsujita, K. Kudo, Leg. Med. 2004, 6, 182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVSit7g%3D&md5=ffe56e0faecca011f4e7297c59a1419aCAS |

[2]  S. Kage, T. Nagata, K. Kudo, J. Anal. Toxicol. 1991, 15, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFals74%3D&md5=a65cdc33e41931062dcb5b9e89049469CAS |

[3]  M. Ago, K. Ago, M. Ogata, Leg. Med. 2008, 10, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtl2iurw%3D&md5=acd0529965acbe04d217458e909c82a1CAS |

[4]  T. H. Milby, J. Occup. Med. 1962, 4, 431.
         | 1:CAS:528:DyaF38Xks1ChsLw%3D&md5=fca8612c4119d1ebf854523f85a63476CAS |

[5]  K. Maebashi, K. Iwadate, K. Sakai, A. Takatsu, K. Fukui, M. Aoyagi, E. Ochiai, T. Nagai, Forensic Sci. Int. 2011, 207, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVOks7k%3D&md5=1b1dbdd17fb5a2fee0452ab6acbbec79CAS |

[6]  A. Truscott, Can. Med. Assoc. J. 2008, 179, 312.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  S. J. D. Reedy, M. D. Schwartz, B. W. Morgan, West. J. Emerg. Med. 2011, 12, 300.

[8]  T. Nagata, S. Kage, K. Kimura, K. Kudo, T. Imamura, Int. J. Legal Med. 1994, 106, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FjsVehsA%3D%3D&md5=5689d15f741cd948ab287883799aadbeCAS |

[9]  T. Miyazato, T. Ishikawa, T. Michiue, S. Oritani, H. Maeda, Forensic Toxicol. 2013, 31, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  X. Shen, G. K. Kolluru, S. Yuan, C. G. Kevil, Methods Enzymol. 2015, 554, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1ynsrfP&md5=8b9044360a5b659a31769419c3cd3af1CAS |

[11]  A. Saeedi, A. Najibi, A. Mohammadi-Bardbori, Int. J. Occup. Environ. Med. 2015, 6, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MvmsFOmsg%3D%3D&md5=182c649a9fcbd5b8a8419525200da2c9CAS |

[12]  D. Jiménez, R. Martínez-Máñez, F. Sancenón, J. V. Ros-Lis, A. Benito, J. Soto, J. Am. Chem. Soc. 2003, 125, 9000.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  D. G. Searcy, M. A. Peterson, Anal. Biochem. 2004, 324, 269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSjurrL&md5=0595697fb93dbc9e474e57f72393e40dCAS |

[14]  Q. Wu, Q. Long, H. Li, Y. Zhang, S. Yao, Talanta 2015, 136, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKqtLY%3D&md5=c5398aff5e4e7ac8e3f29ee21132bca8CAS |

[15]  M. Ritt, S. Sivaramakrishnan, Mol. Pharmacol. 2016, 89, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFGls7bO&md5=6aa9968984fd45dcbf3e230ef169a2d8CAS |

[16]  H. Tao, X. Liao, C. Sun, X. Xie, F. Zhong, Z. Yi, Y. Huang, Spectrochim. Acta Part A 2014, 136, 1328.

[17]  C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu, C. E. Berkman, A. R. Whorton, M. Xian, Angew. Chem. 2011, 50, 10327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersLzN&md5=c52513fff1c208251ae927e7cab73a60CAS |

[18]  J. Wang, L. Long, D. Xie, Y. Zhan, J. Lumin. 2013, 139, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVKiur4%3D&md5=7872773a7d5150e2397998afa9386685CAS |

[19]  L. Quintanar, J. Yoon, C. P. Aznar, A. E. Palmer, K. K. Andersson, R. D. Britt, E. I. Solomon, J. Am. Chem. Soc. 2005, 127, 13832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWhs7jK&md5=a58e5b6b97033633c9923567d62164bfCAS |

[20]  N. Zhang, Y. Si, Z. Sun, S. Li, S. Li, Y. Lin, H. Wang, Analyst 2014, 139, 4620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKjs7rM&md5=70e09c67e3d4289adbce5693186a7121CAS |

[21]  H. Chen, L. Lin, H. Li, J. Li, J.-M. Lin, ACS Nano 2015, 9, 2173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVersb8%3D&md5=909ebaaa935c861d1ae9ddd5c93af867CAS |

[22]  N. Zhang, Y. Si, Z. Sun, L. Chen, R. Li, Y. Qiao, H. Wang, Anal. Chem. 2014, 86, 11714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWnsLbO&md5=6d019593ac9c5179b39bbc4c5d8cf939CAS |

[23]  R. Wang, Physiol. Rev. 2012, 92, 791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptF2kur0%3D&md5=ee7ccbbb6b1ec8f17c0b48c450c58174CAS |

[24]  Y. Cui, X. Duan, H. Li, B. Dang, J. Yin, Y. Wang, A. Gao, Z. Yu, G. Chen, Mol. Neurobiol. 2016, 53, 3646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVynsr7K&md5=3f6a87dd2eae468f21565a2e8f43c802CAS |

[25]  W. Y. Chen, G. Y. Lan, H. T. Chang, Anal. Chem. 2011, 83, 9450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOks7zO&md5=ecd993c1f98887ca57e1c4dc338415d0CAS |

[26]  Y. Pak, J. Li, K. C. Ko, G. Kim, J. Y. Lee, J. Yoon, Anal. Chem. 2016, 88, 5476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xmt12ntb4%3D&md5=b7916b09b2afd5bb4d58c2f94fa3b20eCAS |

[27]  H. Bagheri, A. Afkhami, H. Khoshsafar, A. Hajian, A. Shahriyari, Biosens. Bioelectron. 2017, 89, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhsl2iurfP&md5=72046765b639af8df2685810d43b202fCAS |

[28]  C. Hu, D. P. Yang, Z. Wang, P. Huang, X. Wang, D. Chen, D. Cui, M. Yang, N. Jia, Biosens. Bioelectron. 2013, 41, 656.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWhsrjN&md5=a1ed53983ca7d19f83eafc1c357c2b26CAS |

[29]  C. Hu, D. P. Yang, Z. Wang, L. Yu, J. Zhang, N. Jia, Anal. Chem. 2013, 85, 5200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFGktr0%3D&md5=b0a1f7b6c581de3cb459476cd8a466d2CAS |

[30]  M. Lancia, L. Panata, V. Tondi, L. Carlini, M. Bacci, R. Rossi, Am. J. Forensic Med. Pathol. 2013, 34, 315.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. Ubuka, T. Abe, R. Kajikawa, K. Morino, J. Chromatogr. B: Biomed. Sci. Appl. 2001, 757, 31.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFCku74%3D&md5=426a61ee7fe879701bd7e8c96bf017f4CAS |

[32]  N. Barbera, A. Montana, F. Indorato, N. Arbouche, G. Romano, J. Forensic Sci. 2017, 62, 392.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXjsVOlsrs%3D&md5=c95ee8e121282d35829839a1995e8a60CAS |

[33]  B. H. McAnalley, W. T. Lowry, R. D. Oliver, J. C. Garriott, J. Anal. Toxicol. 1979, 3, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltVejtLg%3D&md5=941f1bb96db099c30a707c4470c47735CAS |