Syntheses and Structure Investigations of 3d Transition Metal Complexes with a Flexible N4O2-Donor Hexadentate Schiff-Base Ligand*
Kyle J. Howard-Smith A , Alexander R. Craze A , Mohan Badbhade B , Christopher E. Marjo B , Timothy D. Murphy C , Patrice Castignolles D , Richard Wuhrer C and Feng Li A EA School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
B Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia.
C Advanced Materials Characterisation Facility, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
D Western Sydney University, Australian Centre for Research On Separation Sciences (ACROSS), School of Science and Health, Locked Bag 1797, Penrith, NSW 2751, Australia.
E Corresponding author. Email: feng.li@westernsydney.edu.au
Australian Journal of Chemistry 70(5) 581-587 https://doi.org/10.1071/CH16678
Submitted: 2 December 2016 Accepted: 11 January 2017 Published: 6 February 2017
Abstract
The syntheses and structure investigations of four new 3d transition metal complexes (1–4) with a flexible N4O2-donor hexadentate Schiff-base ligand are described; three complexes (1, 2, and 4) of FeIII, CoIII, and CuII metal ions have been investigated by UV-vis, FT-IR, high-resolution mass spectrometry (HR-MS), and scanning electron microscopy–electron dispersive spectroscopy, as well as single crystal X-ray diffraction. The X-ray structure of NiII complex 3 is also reported. The molecular structures of the complexes (1–3) demonstrate distorted octahedral coordination geometry, each exhibiting 1 : 1 (M : L) ratios and the CuII complex 4 shows a trinuclear structure with a CuII : L ratio of 3 : 2 in the solid state, which has been proven by X-ray diffraction. On the other hand, a mononuclear species of the CuII complex is formed in solution, which has been identified by electrospray ionization HR-MS.
References
[1] E. L. Gavey, M. Pilkington, Coord. Chem. Rev. 2015, 296, 125.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFeqsb8%3D&md5=02326826933934388b1e93056349b52bCAS |
[2] M. Rezaeivala, H. Keypour, Coord. Chem. Rev. 2014, 280, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFeisL3M&md5=d148f9c589333f943d36c08eef519a1cCAS |
[3] D. J. Fanna, Y. Zhang, L. Li, I. Karatchevtseva, N. D. Shepherd, A. Azim, J. R. Price, J. Aldrich-Wright, J. K. Reynolds, F. Li, Inorg. Chem. Front. 2016, 3, 286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFKitLzF&md5=7394bfb4e8e0466422c81adb80811b93CAS |
[4] D. J. Fanna, Y. Zhang, A. Salih, J. K. Reynolds, F. Li, J. Coord. Chem. 2016, 69, 1883.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xps12msb8%3D&md5=2b2784072f75c7ff939d24019909ae96CAS |
[5] H. Eguchi, M. Umemura, R. Kurotani, H. Fukumura, I. Sato, J.-H. Kim, Y. Hoshino, J. Lee, N. Amemiya, M. Sato, K. Hirata, D. J. Singh, T. Masuda, M. Yamamoto, T. Urano, K. Yoshida, K. Tanigaki, M. Yamamoto, M. Sato, S. Inoue, I. Aoki, Y. Ishikawa, Sci. Rep. 2015, 5, 9194.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKkurjJ&md5=e543b0bdba1d8cef4fc7aac173b9cfb6CAS |
[6] S. Wang, W.-T. Xu, W.-R. He, S. Takaishi, Y.-H. Li, M. Yamashita, W. Huang, Dalton Trans. 2016, 45, 5676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xisleisbo%3D&md5=ae77d6181eccf30c12adad779a6d86feCAS |
[7] S. Hayami, Z. Gu, H. Yoshiki, A. Fujishima, O. Sato, J. Am. Chem. Soc. 2001, 123, 11644.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFyrtbs%3D&md5=db41ca50a8cd812cd1612cb8ca90a893CAS |
[8] V. Mougel, L. Chatelain, J. Pécaut, R. Caciuffo, E. Colineau, J.-C. Griveau, M. Mazzanti, Nat. Chem. 2012, 4, 1011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1CktL3O&md5=c4a4b3450657b6f1b43df3507e67720cCAS |
[9] L. Li, Y. Zhang, M. Avdeev, L. F. Lindoy, D. G. Harman, R. Zheng, Z. Cheng, J. R. Aldrich-Wright, F. Li, Dalton Trans. 2016, 45, 9407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotlCrt70%3D&md5=a33ad56de8505747a6d44af9d7090fecCAS |
[10] F. Reichel, J. K. Clegg, K. Gloe, K. Gloe, J. J. Weigand, J. K. Reynolds, C.-G. Li, J. R. Aldrich-Wright, C. J. Kepert, L. F. Lindoy, H.-C. Yao, F. Li, Inorg. Chem. 2014, 53, 688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVCgsA%3D%3D&md5=e1705ac6b06360aa35e5a473b174444aCAS |
[11] W. J. Ramsay, J. R. Nitschke, J. Am. Chem. Soc. 2014, 136, 7038.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslSqsLs%3D&md5=4a0e45f657f90e611a18cb5f5c336735CAS |
[12] B. W. Tsang, C. J. Mathias, P. E. Fanwick, M. A. Green, J. Med. Chem. 1994, 37, 4400.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvFahsLw%3D&md5=6358f7502088eb2bb1903b49616ffca6CAS |
[13] F. Li, J. K. Clegg, L. F. Lindoy, R. B. Macquart, G. V. Meehan, Nat. Commun. 2011, 2, 205.
| Crossref | GoogleScholarGoogle Scholar |
[14] F. Li, J. K. Clegg, D. Price, C. J. Kepert, Inorg. Chem. 2011, 50, 726.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1altb3M&md5=d4d3328ce39759d1448e6e23345dc7e9CAS |
[15] L. Li, A. R. Craze, D. J. Fanna, A. J. Brock, J. K. Clegg, L. F. Lindoy, J. R. Aldrich-Wright, J. K. Reynolds, F. Li, Polyhedron 2016, in press.
| Crossref | GoogleScholarGoogle Scholar |
[16] R. Kannappan, S. Tanase, I. Mutikainen, U. Turpeinen, J. Reedijk, Polyhedron 2006, 25, 1646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVansbc%3D&md5=a112d9aafc4ff50c5d96be66e307a93bCAS |
[17] T. M. McPhillips, S. E. McPhillips, H. J. Chiu, A. E. Cohen, A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sauter, R. P. Phizackerley, S. M. Soltis, P. Kuhn, J. Synchrotron Radiat. 2002, 9, 401.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xotleluro%3D&md5=4b06744951e5db9160e97e445120839fCAS |
[18] N. P. Cowieson, D. Aragao, M. Clift, D. J. Ericsson, C. Gee, S. J. Harrop, N. Mudie, S. Panjikar, J. R. Price, A. Riboldi-Tunnicliffe, R. Williamson, T. Caradoc-Davies, J. Synchrotron Radiat. 2015, 22, 187.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFeitLrO&md5=1fa8616ba4d7c15fb07b883d272d433eCAS |
[19] W. Kabsch, J. Appl. Cryst. 1993, 26, 795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXptFeltw%3D%3D&md5=41fdf6dde8b26cd71d73ba3ebf3584cdCAS |
[20] G. M. Sheldrick, SADABS: Empirical Absorption and Correction Software 1996 (University of Göttingen: Göttingen).
[21] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, A71, 3.
[23] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=152b232aadeaa73225d2029119611dc4CAS |
[24] M. F. Tweedle, L. J. Wilson, J. Am. Chem. Soc. 1976, 98, 4824.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltFGqtro%3D&md5=45dece4c7097ba972c91fd0da49a8839CAS |
[25] A. S. Rothin, H. J. Banbery, F. J. Berry, T. A. Hamor, C. J. Jones, J. A. McCleverty, Polyhedron 1989, 8, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXltVOqtL8%3D&md5=941f0de12d77bbd213ed021c8b95df76CAS |
[26] S. Biswas, A. Dutta, M. Dolai, K. K. Das, M. Ali, Dalton Trans. 2013, 42, 13210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitL%2FI&md5=9868472906a4074a9eb4ae910f1be63cCAS |