Synthesis of Two 2,2′-Bipyridine Containing Macrocycles for the Preparation of Interlocked Architectures*
Jacob Whittaker A , Suresh Moorthy A , Jonathan Cremers B , Jason R. Price C , John C. McMurtrie D and Jack K. Clegg A EA School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld 4072, Australia.
B Department of Chemistry, The University of Oxford, Chemistry Research Laboratory Mansfield Road, Oxford OX1 3TA, UK.
C The Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic. 3168, Australia.
D School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
E Corresponding author. Email: j.clegg@uq.edu.au
Australian Journal of Chemistry 70(5) 588-593 https://doi.org/10.1071/CH16710
Submitted: 13 December 2016 Accepted: 20 January 2017 Published: 13 February 2017
Abstract
The synthesis and characterisation of two 28-membered, 2,2′-bipyridine-containing macrocycles in high yield is reported. The first imine-containing macrocycle was formed via a Williamson ether synthesis and showed no evidence of higher oligomer formation. Reduction of the imines with sodium borohydride produced the second macrocycle quantitatively.
References
[1] D. A. Leigh, Angew. Chem. Int. Ed. 2016, 55, 14506.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhslagt7nM&md5=3afe124a73d9fa7aa13ab9c737087f54CAS |
[2] (a) J. P. Sauvage, Acc. Chem. Res. 1990, 23, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltlyltrY%3D&md5=1d3a0d6b350be4793ef4bfbac896d904CAS |
(b) J.-P. Sauvage, Acc. Chem. Res. 1998, 31, 611.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. O. Dietrich-Buchecker, J. P. Sauvage, Chem. Rev. 1987, 87, 795.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-P. Collin, C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. A. Bissell, E. Cordova, A. E. Kaifer, J. F. Stoddart, Nature 1994, 369, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslOksrk%3D&md5=493bb1a2d639500e23afd518ca1a3453CAS |
(b) V. Balzani, M. Gómez-López, J. F. Stoddart, Acc. Chem. Res. 1998, 31, 405.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. B. Amabilino, J. F. Stoddart, Chem. Rev. 1995, 95, 2725.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9260.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFylsrrL&md5=358b0f64c41d5f9e8dafb2bbc5a71088CAS |
(b) J.-P. Sauvage, C. Dietrich-Buchecker, Molecular Catenanes, Rotaxanes and Knots 1999 (Wiley-VCH: Weinheim).
[5] M. R. Wilson, J. Solà, A. Carlone, S. M. Goldup, N. Lebrasseur, D. A. Leigh, Nature 2016, 534, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsFClsL0%3D&md5=fa5508bbcc8daaa10cd3f9bf153d9ec1CAS |
[6] D. A. Leigh, J. K. Y. Wong, F. Dehez, F. Zerbetto, Nature 2003, 424, 174.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1CktL4%3D&md5=3c7c459fe4211d23f00f382ccc666c7dCAS |
[7] M. von Delius, D. A. Leigh, Chem. Soc. Rev. 2011, 40, 3656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns12nu7k%3D&md5=2af48fab1b98d7081636d418107c7b5cCAS |
[8] B. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D’Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVCgtA%3D%3D&md5=218075705c1263b3d6dc51548c382be2CAS |
[9] V. Serreli, L. Chin-Fa, E. R. Kay, D. A. Leigh, Nature 2007, 445, 523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWht7o%3D&md5=b54221a80af3713644ef33a6d6e57593CAS |
[10] (a) J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, Nat. Chem. 2012, 4, 15.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVagurzM&md5=acd276aaba997a836b651be549e70ba1CAS |
(b) J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, J. Am. Chem. Soc. 2012, 134, 9488.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-F. Ayme, J. E. Beves, C. J. Campbell, D. A. Leigh, Chem. Soc. Rev. 2013, 42, 1700.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. E. Beves, C. J. Campbell, D. A. Leigh, R. G. Pritchard, Angew. Chem. Int. Ed. 2013, 52, 6464.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. A. Leigh, R. G. Pritchard, A. J. Stephens, Nat. Chem. 2014, 6, 978.
| Crossref | GoogleScholarGoogle Scholar |
(f) V. Marcos, A. J. Stephens, J. Jaramillo-Garcia, A. L. Nussbaumer, S. L. Woltering, A. Valero, J.-F. Lemonnier, I. J. Vitorica-Yrezabal, D. A. Leigh, Science 2016, 352, 1555.
| Crossref | GoogleScholarGoogle Scholar |
(g) F. Li, J. K. Clegg, L. F. Lindoy, R. B. MacQuart, G. V. Meehan, Nat. Commun. 2011, 2, 205.
| Crossref | GoogleScholarGoogle Scholar |
[11] E. Wasserman, J. Am. Chem. Soc. 1960, 82, 4433.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhslKmug%3D%3D&md5=09d01f4af66c03ecc6af704c226043fbCAS |
[12] L. F. Lindoy, The Chemistry of Macrocyclic Ligand Complexes 1989 (Cambridge University Press: Cambridge).
[13] R. A. Turner, A. G. Oliver, R. S. Lokey, Org. Lett. 2007, 9, 5011.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wlt7bL&md5=a0258825e28da7197bd3359541e53c3fCAS |
[14] (a) H. Zhang, E. C. Yu, S. Torker, R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 16493.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFagt7%2FF&md5=0901e63c048c932ccaaeb7ca828d019aCAS |
(b) S. L. Mangold, D. J. O’Leary, R. H. Grubbs, J. Am. Chem. Soc. 2014, 136, 12469.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) P. Mal, D. Schultz, K. Beyeh, K. Rissanen, J. R. Nitschke, Angew. Chem. Int. Ed. 2008, 47, 8297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12htbvF&md5=48534f899de5f22c25b8fe9ead80d2d8CAS |
(b) A. González-Álvarez, A. Frontera, P. Ballester, J. Phys. Chem. B 2009, 113, 11479.
| Crossref | GoogleScholarGoogle Scholar |
(c) J.-F. Ayme, J. E. Beves, D. A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, Nat. Chem. 2012, 4, 15.
| Crossref | GoogleScholarGoogle Scholar |
[16] J. R. Price, J. K. Clegg, R. R. Fenton, L. F. Lindoy, J. C. McMurtrie, G. V. Meehan, A. Parkin, D. Perkins, P. Turner, Aust. J. Chem. 2009, 62, 1014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFensbzL&md5=6399382bf0b281518fd679e1fe81f56bCAS |
[17] A. Livoreil, C. O. Dietrich-Buchecker, J.-P. Sauvage, J. Am. Chem. Soc. 1994, 116, 9399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslSgs7k%3D&md5=103da43d9c4303fc931e9f7994f3a265CAS |
[18] T. M. Cassol, F. W. J. Demnitz, M. Navarro, E. A. d. Neves, Tetrahedron Lett. 2000, 41, 8203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotleqtrw%3D&md5=8090a87b663f8a8da0a2d8ebe7ed1b8bCAS |
[19] Z. Wang, J. Reibenspies, R. J. Motekaitis, A. E. Martell, J. Chem. Soc. 1995, 1511.
| 1:CAS:528:DyaK2MXls1yjtrc%3D&md5=19ba2315c8a49e3cd5c1cf0793e34539CAS |