Oxidation of Cobalt(ii) Bispidine Complexes with Dioxygen*
Peter Comba A B , Bianca Pokrandt A and Hubert Wadepohl AA Universität Heidelberg, Anorganisch-Chemisches Institut und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Im Neuenheimer Feld 270, D-69121 Heidelberg, Germany.
B Corresponding author. Email: peter.comba@aci.uni-heidelberg.de
Australian Journal of Chemistry 70(5) 576-580 https://doi.org/10.1071/CH16674
Submitted: 30 November 2016 Accepted: 4 January 2017 Published: 10 February 2017
Abstract
Bispidine (3,7-diazabicyclo[3.3.1]nonane) ligands, derivatives of diazaadamantane, possess a very rigid backbone and have a high degree of pre-organization for cis-octahedral coordination geometries. Despite their rigidity, they exert a flexible coordination sphere, resulting in stable complexes with a variety of metal ions in various oxidation states. Due to the known high III/II redox potentials of their cobalt complexes, the CoII bispidine complexes are generally resistant to oxidation by dioxygen. Discussed in the present study are various CoII bispidine complexes with tetra- and pentadentate bispidines, with one of these complexes shown to be unstable under aerobic conditions. The decay process has been identified as an oxidative elimination of the 2-methylene pyridine substituent at one of the tertiary amine donors, resulting in picolinate, which is found coordinated to a CoIII product, where the dealkylated N-donor remains unprotonated. The mechanism of this interesting reaction has been studied, and details of the resulting structure of the product complex are discussed.
References
[1] M. Shibata, Modern Syntheses of Cobalt(III) Complexes 1983 (Springer: Berlin, Heidelberg, New York).[2] S. Fallab, P. R. Mitchell, Adv. Inorg. Bioinorg. Mech. 1984, 3, 311.
| 1:CAS:528:DyaL2MXhtlynsr0%3D&md5=f3896540c1cba0b6116f0dd8f1577f65CAS |
[3] S. Hikichi, M. Akita, Y. Moro-oka, Coord. Chem. Rev. 2000, 198, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislegtbs%3D&md5=271a30a8d9ee4f2c0e98a80c03e11669CAS |
[4] A. F. M. Mokhlesur Rahman, W. G. Jackson, A. C. Willig, Inorg. Chem. 2004, 43, 7558.
| Crossref | GoogleScholarGoogle Scholar |
[5] C. Bleiholder, H. Börzel, P. Comba, R. Ferrari, A. Heydt, M. Kerscher, S. Kuwata, G. Laurenczy, G. A. Lawrance, A. Lienke, B. Martin, M. Merz, B. Nuber, H. Pritzkow, Inorg. Chem. 2005, 44, 8145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeisr7N&md5=0023df8b1dd858dadb739b9e1050b8b6CAS |
[6] K. Born, P. Comba, R. Ferrari, G. A. Lawrance, H. Wadepohl, Inorg. Chem. 2007, 46, 458.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlekt7rN&md5=c19b0214aee3fc2486317660c203a070CAS |
[7] P. Comba, W. Schiek, Coord. Chem. Rev. 2003, 238–239, 21.
| Crossref | GoogleScholarGoogle Scholar |
[8] P. Comba, M. Kerscher, W. Schiek, Prog. Inorg. Chem. 2007, 55, 613.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1OrtLg%3D&md5=3c126d22907361387503dec6966c482fCAS |
[9] P. Comba, S. Kuwata, G. Linti, M. Tarnai, H. Wadepohl, Chem Comm. 2006, 2074.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlWltLc%3D&md5=aa65fb9102824f1934bbad166a2cd1e5CAS |
[10] P. Comba, M. Kerscher, M. Merz, V. Müller, H. Pritzkow, R. Remenyi, W. Schiek, Y. Xiong, Chem. – Eur. J. 2002, 8, 5750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFamsQ%3D%3D&md5=5d0d5d5d542b08f49a89f8e7ef980344CAS |
[11] P. Comba, M. Kerscher, G. A. Lawrance, B. Martin, H. Wadepohl, S. Wunderlich, Angew. Chem., Int. Ed. 2008, 47, 4740.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVWjtbg%3D&md5=c7757b6a58aeb0b216d648716f3a8fd4CAS |
[12] P. Comba, S. Fukuzumi, C. Koke, A. M. Löhr, J. Straub, Angew. Chem., Int. Ed. 2016, 55, 11129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1GmtbvI&md5=d206b505c23d34775ecb7325fc4f4f31CAS |
[13] A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor, J. Chem. Soc., Dalton Trans. 1989, S1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXivVCmsw%3D%3D&md5=99c7d5a6821027433df0f62505e0ee54CAS |
[14] K. Born, P. Comba, M. Kerscher, H. Rohwer, Dalton Trans. 2009, 362.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFSmt7fP&md5=818ed8834c11e042343c777394d0ec48CAS |
[15] P. Comba, A. F. Sickmüller, Inorg. Chem. 1997, 36, 4500.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvVyiurw%3D&md5=f9d604592243b1c9ae8b718996a8ad6eCAS |
[16] M. Baumgarten, C. J. Winscom, W. Lubitz, Appl. Magn. Reson. 2001, 20, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslWit7s%3D&md5=9371998fa1557e67428187ffa4b4fb26CAS |
[17] B. M. Hoffman, D. L. Diemente, F. Basolo, J. Am. Chem. Soc. 1970, 92, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXkvFGjug%3D%3D&md5=22a08cae107cf106d5adb3557eef1f8aCAS |
[18] P. Comba, M. Jakob, M. Kerscher, Inorg. Synth. 2010, 35, 70.
| 1:CAS:528:DC%2BC3cXhsF2rtLnJ&md5=ee275cbe290eb483f7d58b4e02ce0d11CAS |
[19] H. Börzel, P. Comba, K. S. Hagen, M. Merz, Y. D. Lampeka, A. Lienke, G. Linti, H. Pritzkow, L. V. Tsymbal, Inorg. Chim. Acta 2002, 337, 407.
| Crossref | GoogleScholarGoogle Scholar |