Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Polymeric Nanofibre Scaffold for the Delivery of a Transforming Growth Factor β1 Inhibitor

Vipul Agarwal A , Fiona M. Wood B C , Mark Fear C and K. Swaminathan Iyer A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia.

B Burns Service Western Australia, Department of Health, Perth, WA 6009, Australia.

C Burn Injury Research Unit, School of Surgery, The University of Western Australia, Crawley, WA 6009, Australia.

D Corresponding author. Email: swaminatha.iyer@uwa.edu.au

Australian Journal of Chemistry 70(3) 280-285 https://doi.org/10.1071/CH16332
Submitted: 29 May 2016  Accepted: 9 August 2016   Published: 14 September 2016

Abstract

Skin scarring is a highly prevalent and inevitable outcome of adult mammalian wound healing. Scar tissue is both pathologically and aesthetically inferior to the normal skin owing to elevated concentration of highly orientated collagen I architecture in the innate repaired tissue. With highly invasive surgery being the main treatment modality, there is a great need for alternative strategies to mitigate the problem of scar formation. Tissue engineering approaches using polymeric scaffolds have shown tremendous promise in various disease models including skin wound healing; however, the problem of skin scarring has been greatly overlooked. Herein, we developed an electrospun poly(glycidyl methacrylate) (ES-PGMA) scaffold incorporating a small-molecule antiscarring agent, PXS64. PXS64, a lipophilic neutral analogue of mannose-6-phosphate, has been shown to inhibit the activation of transforming growth factor β1 (TGFβ1). TGFβ1 is a primary protein cytokine regulating the expression of collagen I during wound healing and therefore governs the formation of scar tissue. The nanofibres were tested for biocompatibility as a tissue engineering scaffold and for their efficacy to inhibit TGFβ1 activation in human dermal skin fibroblasts.


References

[1]  T. Dvir, B. P. Timko, D. S. Kohane, R. Langer, Nat. Nanotechnol. 2011, 6, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Wju73E&md5=92c8ee90c03879082697670d08a67e12CAS | 21151110PubMed |

[2]  D. I. Braghirolli, D. Steffens, P. Pranke, Drug Discov. Today 2014, 19, 743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFert7w%3D&md5=a0759739c1050d144d4f753c53922b12CAS | 24704459PubMed |

[3]  A. Biernacka, M. Dobaczewski, N. G. Frangogiannis, Growth Factors 2011, 29, 196.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKjtbbL&md5=40aa342b425d1814ba09d7bd179302e7CAS | 21740331PubMed |

[4]  M. Walraven, M. Gouverneur, E. Middelkoop, R. H. J. Beelen, M. M. W. Ulrich, Wound Repair Regen. 2014, 22, 3.
         | Crossref | GoogleScholarGoogle Scholar | 24134669PubMed |

[5]  A. Bayat, D. A. McGrouther, M. W. J. Ferguson, BMJ 2003, 326, 88.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s%2FhsFGjsw%3D%3D&md5=9ba1d6aa4a8332dc5f57bac272b61797CAS | 12521975PubMed |

[6]  V. Chiono, E. Pulieri, G. Vozzi, G. Ciardelli, A. Ahluwalia, P. Giusti, J. Mater. Sci. Mater. Med. 2008, 19, 889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Wrt7k%3D&md5=4d730525f1bb507e818195cc55c4c63eCAS | 17665102PubMed |

[7]  A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche, L. M. Wakefield, U. I. Heine, L. A. Liotta, V. Falanga, J. H. Kehrl, Proc. Natl. Acad. Sci. USA 1986, 83, 4167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFGhtL0%3D&md5=3f79a5953fb0424e2e50ad545859626cCAS | 2424019PubMed |

[8]  P. A. Dennis, D. B. Rifkin, Proc. Natl. Acad. Sci. USA 1991, 88, 580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXpsFOmsw%3D%3D&md5=dc99ef83e1ef78964d4479d7d300d279CAS | 1846448PubMed |

[9]  J. Chamberlain, Cardiovasc. Drug Rev. 2001, 19, 329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVCjt7c%3D&md5=3ae295930a787d04e41f28468fbd3582CAS | 11830751PubMed |

[10]  A. Jeanjean, M. Garcia, A. Leydet, J.-L. Montero, A. Morère, Bioorg. Med. Chem. 2006, 14, 3575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGju7c%3D&md5=a5e9d574c260c5662980043b7cb3538aCAS | 16455258PubMed |

[11]  D. B. Berkowitz, G. Maiti, B. D. Charette, C. D. Dreis, R. G. MacDonald, Org. Lett. 2004, 6, 4921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCru7jO&md5=5423f23809352011c5a7ae90f0a93bedCAS | 15606100PubMed |

[12]  V. Agarwal, P. Toshniwal, N. E. Smith, N. M. Smith, B. Li, T. D. Clemons, L. T. Byrne, F. Kakulas, F. M. Wood, M. Fear, B. Corry, K. Swaminathan Iyer, Chem. Commun. 2016, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1OgtrzK&md5=997ac0bda8056c8c18ba68f579ceb91cCAS |

[13]  X. Liu, L. Ma, J. Liang, B. Zhang, J. Teng, C. Gao, Biomaterials 2013, 34, 2038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKnsrrL&md5=77e7b65fbd4b26c2e3fed845075643cfCAS | 23261213PubMed |

[14]  V. Jayarama Reddy, S. Radhakrishnan, R. Ravichandran, S. Mukherjee, R. Balamurugan, S. Sundarrajan, S. Ramakrishna, Wound Repair Regen. 2013, 21, 1.
         | Crossref | GoogleScholarGoogle Scholar | 23126632PubMed |

[15]  Y. Yang, T. Xia, W. Zhi, L. Wei, J. Weng, C. Zhang, X. Li, Biomaterials 2011, 32, 4243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVGmsrc%3D&md5=91a7e1091ba0a5295f4ef449f278ca67CAS | 21402405PubMed |

[16]  N. Abbasi, S. Soudi, N. Hayati-Roodbari, M. Dodel, M. Soleimani, Cell J. 2014, 16, 245.
         | 24611137PubMed |

[17]  H. S. Yoo, T. G. Kim, T. G. Park, Adv. Drug Deliv. Rev. 2009, 61, 1033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wqtr%2FL&md5=642dfcb982f00b8af50712b4820ea0feCAS | 19643152PubMed |

[18]  S. Edmondson, V. L. Osborne, W. T. S. Huck, Chem. Soc. Rev. 2004, 33, 14.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2ksLs%3D&md5=802315606cdcabd7107d59cb584de448CAS | 14737505PubMed |

[19]  K. S. Iyer, B. Zdyrko, H. Malz, J. Pionteck, I. Luzinov, Macromolecules 2003, 36, 6519.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Sht7w%3D&md5=a5d85465ca0846adea279fa44c0ae3f1CAS |

[20]  T. Mosmann, J. Immunol. Methods 1983, 65, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c%2FovFSmtw%3D%3D&md5=00f21a2f65c986bb8976bb08945c8988CAS | 6606682PubMed |