Preparation of CoWO4/g-C3N4 and its Ultra-Deep Desulfurization Property
Pengfei Xing A , Rongxiang Zhao A B , Xiuping Li A and Xiaohan Gao AA College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun 113001, China.
B Corresponding author. Email: zylhzrx@126.com
Australian Journal of Chemistry 70(3) 271-279 https://doi.org/10.1071/CH16320
Submitted: 25 May 2016 Accepted: 6 August 2016 Published: 8 September 2016
Abstract
The ultra-deep desulfurization of fuel oil has become inevitable for environmental protection. Here, CoWO4/g-C3N4 was used as a catalyst, H2O2 as an oxidant, and 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][EtSO4], IL) as an extractant for the oxidative desulfurization of model oil. Scanning electron microscopy, FT-IR spectroscopy, N2 adsorption isotherms, and X-ray diffraction were used to confirm the morphology, structure, and properties of the catalysts. The influence of calcination temperature, loading dose of cobalt, amount of H2O2, reaction temperature, and other parameters were investigated. The removal rate of sulfide in model oil could reach 92.9 % at 80°C in 180 min under the optimal operation conditions (V(oil) = 5 mL, T = 80°C, m(catalyst) = 0.03 g, V(H2O2) = 0.4 mL, t = 180 min, V(IL) = 1.0 mL). In addition, the catalyst was reused five times with no significant reduction in the catalytic activity.
References
[1] M. Te, C. Fairbridge, Z. Ring, Appl. Catal. A Gen. 2001, 219, 267.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFWjtL8%3D&md5=1c5a0da750011b40276e7f14b8a36806CAS |
[2] Y. Liu, N. She, J. Zhao, T. Peng, C. Liu, Pet. Sci. 2013, 10, 589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Sltb3N&md5=f222eb4a3382b848f8e930c20b8633abCAS |
[3] L. A. Gonzalez, P. Kracke, W. H. Green, J. W. Tester, L. M. Shafer, M. T. Timko, Energy Fuels 2012, 26, 5164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVakurY%3D&md5=1e2cc877e7a5537daba31d52de66d5e1CAS |
[4] S. C. Ma, J. J. Yao, X. Jin, B. Zhang, Sci. China: Technol. Sci. 2011, 54, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOhsro%3D&md5=35310db580e3d3c09fc4e4c97bcf2493CAS |
[5] A. V. Anisimov, E. V. Fedorova, A. Z. Lesnugin, V. M. Senyavin, L. A. Aslanov, V. B. Rybakov, A. V. Tarakanova, Catal. Today 2003, 78, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGqu70%3D&md5=d92073aad8c22c13e1806334a214840fCAS |
[6] T. V. Rao, B. Sain, S. Kafola, B. R. Nautiyal, Y. K. Sharma, S. M. Nanoti, M. O. Garg, Energy Fuels 2007, 21, 3420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVaksLc%3D&md5=39b8d802bde8ff20ed93060917580102CAS |
[7] X. Jiang, H. Li, W. Zhu, L. He, H. Shu, J. Lu, Fuel 2009, 88, 431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVartrs%3D&md5=195a2bfca3ffa197665b97d49c547e4aCAS |
[8] P. De Filippis, M. Scarsella, Ind. Eng. Chem. Res. 2008, 47, 973.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1egsQ%3D%3D&md5=3db6744ab9b5e6aeee9b5625e17f5092CAS |
[9] E. W. Qian, J. Jpn. Petrol. Inst. 2008, 51, 14.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFWqsA%3D%3D&md5=f90b2a28aa94cee03d2835e1af627f03CAS |
[10] D. Zhao, J. Wang, E. Zhou, Green Chem. 2007, 9, 1219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ghs7zJ&md5=a22e051fc4b985eb19a7641c141baf4aCAS |
[11] C. Li, Z. Jiang, J. Gao, Y. Yang, S. Wang, F. Tian, F. Sun, X. Sun, P. Ying, C. Han, Chem. – Eur. J. 2004, 10, 2277.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVGgsbo%3D&md5=a62b8877ecdd044ce01c16cec6c31aefCAS | 15112217PubMed |
[12] Z. E. A. Abdalla, B. Li, A. Tufail, J. Ind. Eng. Chem. 2009, 15, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1amsg%3D%3D&md5=2b8e4a87015eff9f727ac92042ab8226CAS |
[13] D. Zhao, J. Wang, E. Zhou, Green Chem. 2007, 9, 1219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Ghs7zJ&md5=a22e051fc4b985eb19a7641c141baf4aCAS |
[14] X. Li, H. Zhu, A. Wang, Y. Wang, Y. Chen, Chem. Lett. 2013, 42, 8.
| Crossref | GoogleScholarGoogle Scholar |
[15] X. Li, S. Huang, Q. Xu, Y. Yang, Transition Met. Chem. 2009, 34, 943.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2lu7rE&md5=128ab9e55dd769c5b95f4e94b3d96fc5CAS |
[16] Z. Li, H. J. Jeong, K. Sivaranjani, B. J. Song, S. B. Park, D. Li, C. W. Lee, M. Jin, J. M. Kim, Nano 2015, 10, 1550075.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFWktLnM&md5=fb996f5959e8e6c15e3a3b6ea9a7dfe4CAS |
[17] Z. E. A. Abdalla, B. Li, A. Tufail, J. Ind. Eng. Chem. 2009, 15, 780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1amsg%3D%3D&md5=2b8e4a87015eff9f727ac92042ab8226CAS |
[18] J. Chang, A. Wang, J. Liu, X. Li, Y. Hu, Catal. Today 2010, 149, 122.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wks73N&md5=d575e2a677616c1c0c60bb8c8efd8d1fCAS |
[19] A. Akbari, M. Omidkhah, J. T. Darian, World Academy of Science, Engineering and Technology: International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 2012, 6, 567.
[20] B. Sun, W. Zhao, L. Wei, H. Li, P. Chen, Chem. Commun. 2014, 50, 13142.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjurrN&md5=5e48fdcb78112990210a5c827fe670e6CAS |
[21] G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. López, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 2015, 54, 11265.
| Crossref | GoogleScholarGoogle Scholar |
[22] Y. Gao, X. Chen, J. Zhang, N. Yan, ChemPlusChem 2015, 80, 1556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlCjtb7O&md5=ce80b2abbbd4b8803648cc52c4a9507bCAS |
[23] S. R. Ede, S. Kundu, ACS Sustainable Chem. Eng. 2015, 3, 2321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSmt7zI&md5=c1f1012778e1882cb49a5e1f333cf1f8CAS |
[24] M. Vafaeezadeh, M. M. Hashemi, RSC Adv. 2015, 5, 31298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFWqsLo%3D&md5=2c29568a0f88ce40137de89b567e989cCAS |
[25] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWrsL7J&md5=718daa44bdb6b68178c38e2abe2edf3fCAS | 18997776PubMed |
[26] Y. C. Zhao, D. L. Yu, H. W. Zhou, Y. J. Tian, O. Yanagisawa, J. Mater. Sci. 2005, 40, 2645.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksleqtrk%3D&md5=b850a33c9ae0eec18787b3fd0ccd36bfCAS |
[27] L. Liu, D. Ma, H. Zheng, X. Li, M. Cheng, X. Bao, Microporous Mesoporous Mater. 2008, 110, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlWjsbw%3D&md5=aa8c177ae59f28b77c9d1407e4021548CAS |
[28] H. Yan, Y. Chen, S. Xu, Int. J. Hydrogen Energy 2012, 37, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OrtLrJ&md5=499a76040cede89b7c763028f29c6513CAS |
[29] L. Liu, D. Ma, H. Zheng, X. Li, M. Cheng, X. Bao, Microporous Mesoporous Mater. 2008, 110, 216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlWjsbw%3D&md5=aa8c177ae59f28b77c9d1407e4021548CAS |
[30] R. M. Liou, S. H. Chen, J. Hazard. Mater. 2009, 172, 498.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CgtbbO&md5=901da41af460f5516547b7a3811aac07CAS | 19640643PubMed |
[31] W. H. Lo, H. Y. Yang, G. T. Wei, Green Chem. 2003, 5, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGgurc%3D&md5=508916b1abe80715f17c263ee5c6c2eeCAS |
[32] Y. Zang, L. Li, Y. Zuo, H. Lin, G. Li, X. Guan, RSC Adv. 2013, 3, 13646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2is7vF&md5=9d9211a28d2f81141ebe763323a75a10CAS |
[33] S. Xun, W. Zhu, D. Zheng, H. Li, W. Jiang, M. Zhang, Y. Qin, Z. Zhao, H. Li, RSC Adv. 2015, 5, 43528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1ygtrY%3D&md5=1e99693b4d585186897e92fd3d96f1c4CAS |
[34] Y. P. Zang, L. P. Li, Y. Zuo, H. F. Lin, G. S. Li, X. F Guan, RSC Adv. 2013, 3, 13646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2is7vF&md5=9d9211a28d2f81141ebe763323a75a10CAS |
[35] G. J. Wang, J. K. Zhang, Y. Liu, Korean J. Chem. Eng. 2013, 30, 1559.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOrsLvN&md5=bb61d95ad52ad8e5598510579d53bb26CAS |
[36] Zaid H. F. M.Chong F. K.Mutalib M. I. A. AIP Conf. Proc. 2014, 1621 ,
[37] H. W. Slamet, E. Nasution, S. Purnama, J. Kosela, Gunlazuardi, Catal. Commun. 2005, 6, 313.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1Sms7c%3D&md5=58e1160f269368f4fef734f9f474bfe3CAS |
[38] C. Shen, Y. J. Wang, J. H. Xu, G. S. Luo, Green Chem. 2016, 18, 771.,
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVais7jL&md5=0a18cd6a1b39e5972bbba7dad1adcd17CAS |
[39] J. Chen, C. Chen, R. Zhang, L. Guo, L. Hua, A. Chen, Y. Xiu, X. Liu, Z. Hou, RSC Adv. 2015, 5, 25904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsF2qsrk%3D&md5=9c62a141c17193de9d6b8b3e4bd2becbCAS |
[40] Q. Zhou, S. Fu, M. Zou, Y. He, Y. Wu, T. Wu, RSC Adv. 2015, 5, 69388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12rs7vF&md5=f3a4336e4872c5160e915feddc88cb81CAS |
[41] W. H. Lo, H. Y. Yang, G. T. Wei, Green Chem. 2003, 5, 639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVGgurc%3D&md5=508916b1abe80715f17c263ee5c6c2eeCAS |
[42] A. F. Ghiron, R. C. Thompson, Inorg. Chem. 1988, 27, 4766.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFOhtQ%3D%3D&md5=e05fb1d598af81a8c6d45abe650bc8fcCAS |
[43] Y. Usui, K. Sato, Green Chem. 2003, 5, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFGrt70%3D&md5=374952003c3bd2db044ce1b1c44752deCAS |