Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Syntheses and Characterizations of Three Organically Templated Zinc Phosphites with 12-Ring Channels

Zhen-Zhen Bao A , Song-De Han A , Jin-Hua Li A , Guo-Ming Wang A B and Zong-Hua Wang A
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Marine Biomass Fiber Materials and Textiles, Qingdao University, Shandong 266071, China.

B Corresponding author. Email: gmwang_pub@163.com

Australian Journal of Chemistry 70(3) 286-292 https://doi.org/10.1071/CH16333
Submitted: 30 May 2016  Accepted: 15 August 2016   Published: 8 September 2016

Abstract

Three new zinc phosphites, [Hapy]2[Zn3(HPO3)4] (1; apy = 4-aminopyridine), [H2hepip][Zn3(HPO3)4]·(H2O)0.25 (2; hepip = N-(2-hydroxyethyl)piperazine), and [H2tmdab][Zn3(HPO3)4] (3; tmdab = N,N,N′,N′-tetramethyl-1,3-diaminobutane), have been synthesized and characterized by infrared spectroscopy, elemental analysis, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. The frameworks of 13 are constructed from 4-connected ZnO4 tetrahedra and 3-connected HPO3 pseudo pyramids with distinct connection mode driven by different organic amine templates. There are 12-membered ring (12-MR) and 8-MR apertures in the (3,4)-connected three-dimensional architecture of 13. It is notable that helical chains are observed in the framework of compound 3.


References

[1]  J. Jiang, J. Yu, A. Corma, Angew. Chem., Int. Ed. 2010, 49, 3120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKrsr0%3D&md5=0c130a7ec8b3445819b9036275489f1aCAS |

[2]  M. Li, D. Li, M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2014, 114, 1343.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaksb7E&md5=7b4d4f461cf19a0bf364f9006f2728e4CAS | 24191753PubMed |

[3]  P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SrtbzN&md5=1470e6f15bc8bdba9e68f2603b7255abCAS | 22168547PubMed |

[4]  S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XnsFWjsA%3D%3D&md5=aa4c6b9fed734495650b5adf532c3045CAS |

[5]  A. K. Cheetham, G. Férey, T. Loiseau, Angew. Chem., Int. Ed. 1999, 38, 3268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1yksbo%3D&md5=9c024c7cbad014c10f5d921686a75bb3CAS |

[6]  J. Yu, R. Xu, Chem. Soc. Rev. 2006, 35, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gmu7c%3D&md5=58a7ebb67a52cea45a1ee011a4487607CAS | 16791331PubMed |

[7]  L. Liu, J. Yang, J. Li, J. Dong, D. Šišak, M. Luzzatto, L. B. McCusker, Angew. Chem., Int. Ed. 2011, 50, 8139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFegsLw%3D&md5=76e64b4513f93b660adb5be41042aa8aCAS |

[8]  C. Martineau, T. Loiseau, L. Beitone, G. Ferey, B. Bouchevreau, F. Taulelle, Dalton Trans. 2013, 42, 422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmsr7K&md5=ee0a7fc41b51298cae50cd0054557c81CAS | 23069866PubMed |

[9]  C. Tao, J. Wu, Y. Yan, C. Shi, J. Li, Inorg. Chem. Front. 2016, 3, 541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtF2nurs%3D&md5=c89b0f09edc41340e7871f0c65eae3caCAS |

[10]  G. Y. Yang, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 8389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFSmsbg%3D&md5=78b484c38382a00eff90279b60ea42b8CAS |

[11]  Y. Yang, Y. Zhao, J. Yu, S. Wu, R. Wang, Inorg. Chem. 2008, 47, 769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFShsQ%3D%3D&md5=7091f9871bc24efa63647b5f81cceed1CAS | 18177036PubMed |

[12]  Y. Wei, Z. Tian, H. Gies, R. Xu, H. Ma, R. Pei, W. Zhang, Y. Xu, L. Wang, K. Li, B. Wang, G. Wen, L. Lin, Angew. Chem., Int. Ed. 2010, 49, 5367.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlWgtbY%3D&md5=94b2468c51805ee2d470dc699ffc7715CAS |

[13]  M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvFOjurY%3D&md5=27ed3ce4b186fac0f84eb8c5b22da97bCAS |

[14]  H. Xing, W. Yang, T. Su, Y. Li, J. Xu, T. Nakano, J. Yu, R. Xu, Angew. Chem., Int. Ed. 2010, 49, 2328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslGlurs%3D&md5=9a4334b081a985377e4576c11cdacc4fCAS |

[15]  P. C. Jhang, N. T. Chuang, S. L. Wang, Angew. Chem., Int. Ed. 2010, 49, 4200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVylurc%3D&md5=2f23b44b418d598380e9dfd08206f7c3CAS |

[16]  Y. Wang, J. Yu, M. Guo, R. Xu, Angew. Chem., Int. Ed. 2003, 42, 4089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSlsbY%3D&md5=f294972bcb40dee46b2aa5c495f5bcb7CAS |

[17]  Y. Wang, J. Yu, Y. Li, Z. Shi, R. Xu, Chem. – Eur. J. 2003, 9, 5048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosF2qu7g%3D&md5=dec09323fed4d048757381c92bead290CAS | 14562322PubMed |

[18]  P. Chen, J. Li, F. Duan, J. Yu, R. Xu, R. P. Sharma, Inorg. Chem. 2007, 46, 6683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1CgsLs%3D&md5=7aac2e1bebe93f860f7fc97d9509f249CAS | 17625830PubMed |

[19]  L. Zhao, J. Li, P. Chen, G. Li, J. Yu, R. Xu, Chem. Mater. 2008, 20, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgurvP&md5=556641c46bace540c08f7831b2c92bdaCAS |

[20]  G. M. Wang, J. H. Li, L. Wei, S. D. Han, X. M. Zhao, Z. Z. Bao, CrystEngComm 2015, 17, 8414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1WjsrzL&md5=5a34dc09cd6e91c56281a59028353fc4CAS |

[21]  M. J. Sie, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2016, 138, 6719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvFKisbw%3D&md5=d095b922b3d0ca2d86641209082400aeCAS | 27181272PubMed |

[22]  Y. Yang, Y. Zhao, J. Yu, S. Wu, R. Wang, Inorg. Chem. 2008, 47, 769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFShsQ%3D%3D&md5=7091f9871bc24efa63647b5f81cceed1CAS | 18177036PubMed |

[23]  J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew. Chem., Int. Ed. 2006, 45, 2546.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVCmsbg%3D&md5=064e0087050d6d34a0ffb6f93e9340d7CAS |

[24]  X. Luo, D. Luo, H. Zeng, M. Gong, Y. Chen, Z. Lin, Inorg. Chem. 2011, 50, 8697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhurjK&md5=1dfe589189873a697102a311b6cf2beaCAS | 21838225PubMed |

[25]  P. Wang, G.-M. Wang, J.-H. Li, Z.-H. Wang, Y.-X. Wang, J.-H. Lin, Solid State Sci. 2012, 14, 1030.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisLbP&md5=3ee9440d5ca50719c795f3ee3d69a380CAS |

[26]  Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFKguro%3D&md5=affc72613b4b32349a9a41442052809aCAS | 17411053PubMed |

[27]  H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, C. H. Lin, K. H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtLs%3D&md5=58f988c3d7601dd7241d9f36cfc4dbb6CAS | 23348508PubMed |

[28]  P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1GlsL4%3D&md5=354d4ced0fa605d2527e78458b5cea38CAS |

[29]  E. R. Parnham, R. E. Morris, J. Am. Chem. Soc. 2006, 128, 2204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlahtA%3D%3D&md5=221a130364eaf8ce7a4084dd696e7204CAS | 16478161PubMed |

[30]  X. Song, Y. Li, L. Gan, Z. Wang, J. Yu, R. Xu, Angew. Chem., Int. Ed. 2009, 48, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFylsrY%3D&md5=eb35897b1768d8983218269c54f9c016CAS |

[31]  Y. Wang, J. Yu, Y. Li, Z. Shi, R. Xu, Chem. – Eur. J. 2003, 9, 5048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosF2qu7g%3D&md5=dec09323fed4d048757381c92bead290CAS | 14562322PubMed |

[32]  E. V. Anokhina, Y. B. Go, Y. Lee, T. Vogt, A. J. Jacobson, J. Am. Chem. Soc. 2006, 128, 9957.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFaqtrg%3D&md5=9a46275863213c0d0a39f21d1fb47a3fCAS | 16866555PubMed |

[33]  Z. Dong, L. Zhao, Z. Liang, P. Chen, Y. Yan, J. Li, J. Yu, R. Xu, Dalton Trans. 2010, 39, 5439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWqu70%3D&md5=e22742f0839dc54aa0ece85f43fbcf00CAS | 20431829PubMed |

[34]  G. Wang, J. Li, X. Zhang, P. Wang, B. Pang, Z. Wang, Y. Wang, J. Lin, C. Pan, Dalton Trans. 2013, 42, 13084.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitL%2FF&md5=22528bf9a5dd4be813f895cf570e8d5eCAS | 23877151PubMed |

[35]  G. Wang, Z. Ding, J. Li, X. Lv, X. Zhang, X. Zhao, Z. Wang, Y. Wang, J. Lin, CrystEngComm 2014, 16, 3296.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFGqsrs%3D&md5=feecfa4c80ed542f9c52532acec8dedfCAS |

[36]  G. M. Wang, J. H. Li, L. Wei, X. Zhang, Z. Z. Bao, RSC Adv. 2015, 5, 74811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVWmurfL&md5=3b8e82c2377df857a3cb7e484b5c9cfaCAS |

[37]  Rigaku, Process-auto 1998 (Rigaku Americas Corporation: The Woodlands, TX).

[38]  G. M. Sheldrick, SHELXS97 Program for Solution of Crystal Structures 1997 (University of Göttingen: Göttingen).

[39]  A. L. Spek, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, C34.

[40]  Ch. Baerlocher, W. M. Meier, D. H. Olson, Atlas of Zeolitic Framework Types 2001 (Elsevier: Amsterdam).

[41]  C. Y. Pan, L. J. Zhong, F. H. Zhao, Y. Z. Luo, D. G. Li, Inorg. Chem. 2015, 54, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCrsb%2FL&md5=930aa0cf64231f882295afe62145746eCAS | 25535768PubMed |

[42]  C. Y. Pan, L. J. Zhong, F. H. Zhao, H. M. Yang, J. Zhou, Chem. Commun. 2015, 51, 753.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFejurjE&md5=2100a87c9af094d3c3d8c048f81a4359CAS |

[43]  Z. E. Lin, J. Zhang, Y. Q. Sun, G. Y. Yang, Inorg. Chem. 2004, 43, 797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWisLbE&md5=e72bb2cc36852551f0a3f37c83275bf8CAS | 14731044PubMed |

[44]  L. L. Huang, T. Y. Song, Y. Fan, L. Yang, L. P. Yang, H. Zhang, L. Wang, J. N. Xu, Microporous Mesoporous Mater. 2010, 132, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1artLs%3D&md5=865a251416ba3da5af15288396d7b87cCAS |