Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Effects of SiO2 and CeO2 Addition on the Performances of MnOx/TiO2 Catalysts

Juhua Luo A C , Hongkai Mao A B , Xu Wang A and Wei Yao A
+ Author Affiliations
- Author Affiliations

A School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

B School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.

C Corresponding author. Email: luojuhua@163.com

Australian Journal of Chemistry 69(10) 1180-1185 https://doi.org/10.1071/CH16060
Submitted: 2 February 2016  Accepted: 18 April 2016   Published: 25 May 2016

Abstract

A TiO2-SiO2 mixed oxide was obtained by a co-precipitation method. MnOx-CeO2/TiO2-SiO2 were prepared by an impregnation method and their activity towards the selective catalytic reduction of NO with NH3 at low temperature were evaluated. Compared with pure TiO2, TiO2-SiO2 exhibited an evidently larger surface area and pore volume, and a smaller average pore diameter with narrow distribution. The NO conversion of the MnOx/TiO2-SiO2 catalyst could be improved by the addition of an appropriate amount of CeO2 in the temperature range of 100–180°C. MnOx-CeO2/TiO2-SiO2 with 10 wt-% CeO2 showed the highest activity with 96 % NO conversion at 180°C.


References

[1]  S. K. Wu, H. L. Li, L. Q. Li, C. Y. Wu, J. Y. Zhang, K. M. Shih, Fuel 2015, 159, 876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyqu7bM&md5=1be81cc5b15496b5eceb087b58300b92CAS |

[2]  W. Z. Song, H. Y. Wu, J. C. Wang, Y. F. Lin, J. B. Song, Y. Xie, L. Li, K. Y. Shi, Aust. J. Chem. 2015, 68, 1569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1WqsrvJ&md5=8f96d172e420e16510fbe20c29f9aba6CAS |

[3]  A. Scheuer, O. Hirsch, R. Hayes, H. Vogel, M. Votsmeier, Catal. Today 2011, 175, 141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiur7J&md5=7bbbac463a246c8a64af053206997051CAS |

[4]  X. Y. Wang, W. Wen, J. X. Mi, X. X. Li, R. H. Wang, Appl. Catal. B 2015, 176-177, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslGht7w%3D&md5=7844383127334d19b9d11b2ead32c8afCAS |

[5]  P. G. W. A. Kompio, A. Brückner, F. Hipler, G. Auer, E. Löffler, W. Grünert, J. Catal. 2012, 286, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslOjtA%3D%3D&md5=b6617ba416aff5b4ffe682edb86372a1CAS |

[6]  C. K. Seo, B. Choi, J. Ind. Eng. Chem. 2015, 25, 239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSms7%2FK&md5=a61cab95fb80dcbf77007929df21f02aCAS |

[7]  C. T. Chen, W. L. Tan, J. Taiwan Inst. Chem. Eng. 2012, 43, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt12nt78%3D&md5=4c363eccb4a043317d712aa297156c2fCAS |

[8]  X. M. Wang, X. Y. Li, Q. D. Zhao, W. B. Sun, M. Tade, S. M. Liu, Chem. Eng. J. 2016, 288, 216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSgsbrE&md5=4e88bc46f5007e8e5715f56fca6fd241CAS |

[9]  T. T. Gu, R. B. Jin, Y. Liu, H. F. Liu, X. L. Weng, Z. B. Wu, Appl. Catal. B 2013, 129, 30.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKmt7vP&md5=2c14e27b9956e6754f85e935df63090dCAS |

[10]  N. Z. Yang, R. T. Guo, W. G. Pan, Q. L. Chen, Q. S. Wang, C. Z. Lu, Fuel 2016, 169, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVeisbzO&md5=45a46a8055e67928954d33539a62c2edCAS |

[11]  D. A. Pena, B. S. Uphade, P. G. Smirniotis, J. Catal. 2004, 221, 421.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVymsA%3D%3D&md5=ea4e5d5acb02670f5defe87547ec351fCAS |

[12]  S. S. R. Putluru, L. Schill, A. D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Appl. Catal. B 2015, 165, 628.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVygsbnL&md5=4e74d1c67198db648080bed99c7124aeCAS |

[13]  B. X. Shen, X. P. Zhang, H. Q. Ma, Y. Yao, T. Liu, J. Environ. Sci. (China) 2013, 25, 791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ShtbrN&md5=89176dace2ec9b79e245abb7c624932cCAS |

[14]  X. N. Lu, C. Y. Song, S. H. Jia, Z. S. Tong, X. L. Tang, Y. X. Teng, Chem. Eng. J. 2015, 260, 776.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1ahsLbF&md5=e7cd774cd06477d36e8c21f6d2e52987CAS |

[15]  L. Qu, C. T. Li, G. G. Zeng, M. Y. Zhang, M. F. Fu, J. F. Ma, F. M. Zhan, D. Q. Luo, Chem. Eng. J. 2014, 242, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislKntrc%3D&md5=a844dc12acf2ea26eb8bed04de8c6888CAS |

[16]  R. B. Jin, Y. Liu, Z. B. Wu, H. Q. Wang, T. T. Gu, Chemosphere 2010, 78, 1160.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslWqsL8%3D&md5=54d898f5f7f9c3106ff9e78a7deb3b5bCAS |

[17]  W. R. Zhao, Y. P. Tang, Y. Wan, L. Li, S. Yao, X. W. Li, J. L. Gu, Y. S. Li, J. L. Shi, J. Hazard. Mater. 2014, 278, 350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WjsLjL&md5=38b201d1ca9f4a00dc2e3abce3b9e16eCAS |

[18]  P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, P. G. Smirniotis, Appl. Catal. B 2007, 76, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKlt7nP&md5=e8b03348cd8649fd92c3c9ea5c20e183CAS |

[19]  Z. F. Liu, J. Tabora, R. J. Davis, J. Catal. 1994, 149, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFCjsLs%3D&md5=b3be688a515ede9991c7919e4905bb65CAS |

[20]  Y. Peng, C. X. Liu, X. Y. Zhang, J. H. Li, Appl. Catal. B 2013, 140–141, 276.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  M. Pourkhalil, A. Z. Moghaddam, A. Rashidi, J. Towfighi, Y. Mortazavi, Appl. Surf. Sci. 2013, 279, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFGktrw%3D&md5=96f2064e6cca3c9dc797c71aeaa0a26dCAS |

[22]  T. Boningari, D. K. Pappas, P. R. Ettireddy, A. Kotrba, P. G. Smirniotis, Ind. Eng. Chem. Res. 2015, 54, 2261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlWmu7c%3D&md5=18ad39cbda5d540dc1d3bb9bd09a7eccCAS |

[23]  H. Benesi, J. Phys. Chem. C 1957, 61, 970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXkt1M%3D&md5=137d77479566be600f0c57232f82e3ccCAS |

[24]  H. M. Liu, D. Liu, P. Yuan, D. Y. Tan, J. G. Cai, H. P. He, J. X. Zhu, Z. G. Song, Phys. Chem. Miner. 2013, 40, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFentbk%3D&md5=a4c7f5e39718a54f0bba292247340b78CAS |

[25]  S. M. Saqer, D. I. Kondarides, X. E. Verykios, Appl. Catal. B 2011, 103, 275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFaktLg%3D&md5=210789be315b91a92ee8f6844423ad59CAS |

[26]  M. Kobayashi, R. Kuma, S. Masaki, N. Sugishima, Appl. Catal. B 2005, 60, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGrsrzP&md5=211fbff7aa21b271806072758885f8a0CAS |

[27]  B. X. Shen, Y. Yao, J. H. Chen, X. P. Zhang, Microporous Mesoporous Mater. 2013, 180, 262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOrtrbE&md5=e008c16a77af59bbd0cf762af1d18630CAS |

[28]  S. M. Lee, K. H. Park, S. C. Hong, Chem. Eng. J. 2012, 195–196, 323.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  B. X. Shen, Y. Yao, H. Q. Ma, T. Liu, Chin. J. Catal. 2011, 32, 1803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ygtr4%3D&md5=1b8c9441da80f4fd4d89007869307359CAS |

[30]  F. Babou, G. Coudurier, J. Vedrine, J. Catal. 1995, 152, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksl2jur4%3D&md5=ddf8c09e0df5b0d3f9d8a810126742dfCAS |

[31]  Y. M. Wang, S. W. Liu, Z. L. Xiu, X. B. Jiao, X. P. Cui, J. Pan, Mater. Lett. 2006, 60, 974.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Cr&md5=2af8c1c0b780373badcba5f74af33909CAS |

[32]  Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Catal. Commun. 2008, 9, 2217.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFSruro%3D&md5=ff269e1d43b05042f9515ef12789eb10CAS |

[33]  C. Wang, L. Sun, Q. Q. Cao, B. Q. Hu, Z. W. Huang, X. F. Tang, Appl. Catal. B 2011, 101, 598.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WjurnP&md5=b9612f5a462996948848632dd4f79fefCAS |

[34]  Z. B. Wu, B. Q. Jiang, Y. Liu, H. Q. Wang, R. B. Jin, Environ. Sci. Technol. 2007, 41, 5812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGqsLs%3D&md5=67e6cd1d1674e04aa5ea5a2f92378a0dCAS |

[35]  Y. Chi, S. S. Chuang, Catal. Today 2000, 62, 303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFSks7s%3D&md5=50b2b31d33597c3c4c709f66b7d9b943CAS |

[36]  S. Roy, B. Viswanath, M. S. Hegde, G. Madras, J. Phys. Chem. C 2008, 112, 6002.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslahtLg%3D&md5=730827dfa7b70a6068b2f17bf9d6c037CAS |

[37]  X. D. Wu, Z. C. Si, G. Li, D. Weng, Z. R. Ma, J. Rare Earths 2011, 29, 64.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFSmtbk%3D&md5=88c2c52185f511eb69244bb346937fecCAS |