tert-Butyldimethylsilyl Amine (TBDMS-NH2): A Mild and Green Reagent for the Protection of Benzyl Alcohols, Phenols, and Carboxylic Acids under Solvent-Free Conditions
Jeremy A. Duczynski A , Rebecca Fuller A B and Scott G. Stewart A BA School of Chemistry and Biochemistry, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia.
B Corresponding authors. Email: rebecca.fuller@uwa.edu.au; scott.stewart@uwa.edu.au
Australian Journal of Chemistry 69(10) 1172-1179 https://doi.org/10.1071/CH16097
Submitted: 19 February 2016 Accepted: 12 April 2016 Published: 11 May 2016
Abstract
Herein, we present the use of the tert-butyldimethylsilyl amine (TBDMS-NH2) as a silylating reagent for phenols, benzyl alcohols, and carboxylic acids. Unlike other silyl protection reactions, this reported process with TBDMS-NH2 does not involve the formation of HCl. Importantly, we report the efficacy of this reagent in operating under solvent-free conditions and enabling short reaction times.
References
[1] E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktlGlug%3D%3D&md5=22fc2a90ef4504eb12dd2ea30fb0558aCAS |
[2] Wuts, P. G. M., Greene’s Protective Groups in Organic Synthesis (5th edn) 2014 (John Wiley & Sons: Hoboken, NJ).
[3] A. Bartoszewicz, M. Kalek, J. Nilsson, R. Hiresova, J. Stawinski, Synlett 2008, 2008, 37.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. Patschinski, C. Zhang, H. Zipse, J. Org. Chem. 2014, 79, 8348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Git7vM&md5=bf5778060357f5f4e01891c9fea45a07CAS | 25078902PubMed |
[5] P. Patschinski, H. Zipse, Org. Lett. 2015, 17, 3318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKitbrN&md5=426b61c33013f3a5de9d2dfe1f1a29e8CAS | 26107932PubMed |
[6] K. Mai, G. Patil, J. Org. Chem. 1986, 51, 3545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFGisLg%3D&md5=3aa290fdb0e945c3da0a2101c7816580CAS |
[7] E. J. Corey, H. Cho, C. Rücker, D. H. Hua, Tetrahedron Lett. 1981, 22, 3455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xlt1eltQ%3D%3D&md5=022f7ad820ce32a5619018622cdaeb0dCAS |
[8] Y. Ojima, K. Yamaguchi, N. Mizuno, Adv. Synth. Catal. 2009, 351, 1405.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1aqsrg%3D&md5=36c44c001fdb9b43ecbc303873ebebbdCAS |
[9] R. C. Ronald, J. M. Lansinger, T. S. Lillie, C. J. Wheeler, J. Org. Chem. 1982, 47, 2541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xkt1emsrc%3D&md5=aca93ea07500517806635a000cdadbd9CAS |
[10] P. M. Kendall, J. V. Johnson, C. E. Cook, J. Org. Chem. 1979, 44, 1421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvVKlu7k%3D&md5=793aff871108fee6e59789ffd2a9c328CAS |
[11] D. L. J. Clive, D. Kellner, Tetrahedron Lett. 1991, 32, 7159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht12js7k%3D&md5=1b41caedae21ce9062f7aecaece718f3CAS |
[12] S. Pindi, J. Wu, G. Li, J. Org. Chem. 2013, 78, 4006.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFKnsrk%3D&md5=915f48dc34ce4e79db0925cc85e832b9CAS | 23496279PubMed |
[13] R. M. Adlington, A. G. M. Barrett, P. Quayle, A. Walker, M. J. Betts, J. Chem. Soc., Perkin Trans. 1 1983, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltVGjtLw%3D&md5=41d620ff3d4cc81d2a92dae841d9fddbCAS |
[14] Z. Wang, J.-H. Liu, C.-J. He, S. Jiang, B. Åkermark, L.-C. Sun, J. Organomet. Chem. 2007, 692, 5501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GitLrM&md5=b0d5f9b4921aeed701f262de623797c4CAS |
[15] P. J. Walsh, F. J. Hollander, R. G. Bergman, Organometallics 1993, 12, 3705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmt1Kisro%3D&md5=55df3cdcddfb56252a6982aecb8c3da3CAS |
[16] S. D. Cosham, A. L. Johnson, K. C. Molloy, A. J. Kingsley, Inorg. Chem. 2011, 50, 12053.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWms77F&md5=c76b7f8c27156b29c56be9ba79aa7511CAS | 22053704PubMed |
[17] P. J. Walsh, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1992, 114, 1708.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVGgt7c%3D&md5=a1f15e05fe54ac255c46ba7c9d08ca44CAS |
[18] M. Herberhold, V. Trobs, H. Zhou, B. Wrackmeyer, Z. Naturforsch., B: J. Chem. Sci. 1997, 52, 1181.
| 1:CAS:528:DyaK2sXntVygsbg%3D&md5=772e57e156080d40894b0e81c3d7f852CAS |
[19] M. Veith, M. Opsölder, M. Zimmer, V. Huch, Eur. J. Inorg. Chem. 2000, 1143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsl2nsL0%3D&md5=f2b569d8068eb0babd9cb53880c52045CAS |
[20] S. Urgaonkar, J. F. Cortese, R. H. Barker, M. Cromwell, A. E. Serrano, D. F. Wirth, J. Clardy, R. Mazitschek, Org. Lett. 2010, 12, 3998.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCnsbzJ&md5=8eae40799952b5d6996e95e7c64c97fdCAS | 20718474PubMed |
[21] B. Tecklenburg, U. Klingebiel, M. Noltemeyer, D. Schmidt-Bäse, Z. Naturforsch., B: J. Chem. Sci. 1992, 47b, 855.
[22] I. Hemme, B. Tecklenburg, M. Noltemeyer, U. Klingebiel, Chem. Ber. 1995, 128, 351.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVKlt7Y%3D&md5=5d6589710c178ed5d6f8f73682077a3aCAS |
[23] Y. K. Tonomura, Toru; Jpn. Kokai Tokkyo Koho (2014), J. A., Ed. 2014; Vol. JP 2014218463 A 20141120.
[24] K. Tanaka, F. Toda, Chem. Rev. 2000, 100, 1025.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1aiu7w%3D&md5=d72dc08f46bbb8356d01eaf652185dd2CAS | 11749257PubMed |
[25] M. A. P. Martins, C. P. Frizzo, D. N. Moreira, L. Buriol, P. Machado, Chem. Rev. 2009, 109, 4140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOgurnO&md5=d514519bda79d029f8fa1a3d3ae842cdCAS |
[26] J. R. Bowser, R. H. Neilson, R. L. Wells, Inorg. Chem. 1978, 17, 1882.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXksF2qsb0%3D&md5=a89c4fc82e1584d94a7ef5fca6abb565CAS |
[27] M. M. Mojtahedi, M. S. Abaee, M. Eghtedari, Appl. Organomet. Chem. 2008, 22, 529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVegtrbF&md5=741ccf409df1363e4d023daaadbc9f42CAS |
[28] A. Liu, K. Dillon, R. M. Campbell, D. C. Cox, D. M. Huryn, Tetrahedron Lett. 1996, 37, 3785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlykurw%3D&md5=f6a9b154d93aaf3d0c1b688b0938fc7dCAS |
[29] J. W. Perich, R. B. Johns, Synthesis 1989, 1989, 701.
| Crossref | GoogleScholarGoogle Scholar |
[30] K. Yamamoto, M. Takemae, Bull. Chem. Soc. Jpn. 1989, 62, 2111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpvVKiug%3D%3D&md5=5785f1ecc053b2d19c82bb880512cd33CAS |
[31] G.-B. Liu, H.-Y. Zhao, Beilstein J. Org. Chem. 2008, 4, 27.
| Crossref | GoogleScholarGoogle Scholar | 18941497PubMed |
[32] G.-B. Liu, H.-Y. Zhao, T. Thiemann, Adv. Synth. Catal. 2007, 349, 807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVaqur4%3D&md5=ab4cbd5d54be75c694c275b5727ba2a7CAS |
[33] R. West, P. Boudjouk, J. Am. Chem. Soc. 1973, 95, 3983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksVWmtr8%3D&md5=02e985588f8e13c193bd1fda14f18181CAS |
[34] M. S. Baker, S. T. Phillips, J. Am. Chem. Soc. 2011, 133, 5170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFKms78%3D&md5=48cc860dc188d55b54f93601542ffe75CAS | 21425777PubMed |
[35] K.-I. Oyama, T. Kondo, Org. Lett. 2003, 5, 209.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFY%3D&md5=b6ca06b8aa86c3716d9c089ed4e10acdCAS |
[36] T. Ikawa, K. Hattori, H. Sajiki, K. Hirota, Tetrahedron 2004, 60, 6901.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVWrtrk%3D&md5=4f9a48d8b7254f7b5511933707908db1CAS |
[37] M. Iwao, J. Org. Chem. 1990, 55, 3622.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlCqsLY%3D&md5=7ad9b91376c088ded7e061f61ee0e323CAS |
[38] J. Keilitz, S. G. Newman, M. Lautens, Org. Lett. 2013, 15, 1148.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislOgsLs%3D&md5=389077c4d83924048d6a63e183a63edeCAS | 23421491PubMed |
[39] E. M. Phillips, T. Mesganaw, A. Patel, S. Duttwyler, B. Q. Mercado, K. N. Houk, J. A. Ellman, Angew. Chem., Int. Ed. 2015, 54, 12044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFartbnK&md5=ca6fc97263984b65d3c09c4d924404ddCAS |
[40] R. S. Lewis, C. J. Garza, A. T. Dang, T. K. A. Pedro, W. J. Chain, Org. Lett. 2015, 17, 2278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVWntb0%3D&md5=fc928e14ecb998e9777dd0ce7019fad3CAS | 25906358PubMed |
[41] S. Manna, S. Maity, S. Rana, S. Agasti, D. Maiti, Org. Lett. 2012, 14, 1736.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wlur0%3D&md5=972f527c43af34027cf1241c69cdedb7CAS | 22409632PubMed |
[42] H. Slebocka-Tilk, R. S. Brown, J. Org. Chem. 1985, 50, 4638.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlvFGlt7s%3D&md5=c4daabd49901951277679f358c064d16CAS |
[43] F. A. Macías, D. Marín, A. Oliveros-Bastidas, D. Chinchilla, A. M. Simonet, J. M. G. Molinillo, J. Agric. Food Chem. 2006, 54, 991.
| Crossref | GoogleScholarGoogle Scholar | 16478208PubMed |
[44] B. V. Rokade, S. K. Malekar, K. R. Prabhu, Chem. Commun. 2012, 48, 5506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1aktbs%3D&md5=13b648bfa6c1754fb87e9f1e60b98eabCAS |
[45] K. Maeyama, N. Iwasawa, J. Org. Chem. 1999, 64, 1344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFylug%3D%3D&md5=ff1c1148a856675652f2137d3f64a5a1CAS |
[46] Y. H. Chang, F.-T. Chiu, G. Zon, J. Org. Chem. 1981, 46, 342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmsVyitg%3D%3D&md5=419546b738d6c1e3b2dd6de99b8d68b2CAS |
[47] A. M. Warshawsky, A. I. Meyers, J. Am. Chem. Soc. 1990, 112, 8090.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlKmsg%3D%3D&md5=f8efc7bb11873a2237fbbb54d40532aaCAS |
[48] R. Quach, D. P. Furkert, M. A. Brimble, Tetrahedron Lett. 2013, 54, 5865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOns77E&md5=fbaab83a344e769866ee7b5e2844b888CAS |
[49] A. T. Khan, S. Ghosh, L. H. Choudhury, Eur. J. Org. Chem. 2004, 2198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCnu74%3D&md5=0bc1bbc398c69c822e73e3449ae4d504CAS |