Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Backbone Phosphonamide-Functionalized Imidazol-2-ylidene Complexes

Paresh Kumar Majhi A , Gregor Schnakenburg A , Anthony J. Arduengo III B C and Rainer Streubel A C
+ Author Affiliations
- Author Affiliations

A Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany.

B Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.

C Corresponding authors. Email: aj@ajarduengo.net; r.streubel@uni-bonn.de

Australian Journal of Chemistry 69(10) 1186-1192 https://doi.org/10.1071/CH16132
Submitted: 04 March 2016  Accepted: 19 April 2016   Published: 10 June 2016

Abstract

The synthesis of M(CO)5 complexes bearing 4-phosphonamide and 4,5-bis(phosphonamide)-imidazol-2-ylidene ligands (NHCP = phosphonamide-based N-heterocyclic carbene) is reported. Deprotonation of respective imidazolium hydrogensulfate salts with potassium tert-butoxide (KOtBu) in the presence of [M(CO)5(CH3CN)] afforded complexes with the formula [M(CO)5(NHCP)]. In a similar fashion, reaction of in situ generated NHCP with [Rh(cod)Cl]2 (cod = 1,5-cyclooctadiene) afforded a complex with the formula [Rh(cod)Cl(NHCP)]. Low-temperature deprotonation of the imidazolium NHCP·H2SO4 with potassium hexamethyldisilazide (KHMDS) in the presence of [AuCl(SMe2)] furnished the corresponding AuI NHC complex. All complexes were characterized by various spectroscopic and spectrometric methods. In addition, further structural confirmation is provided by key single-crystal X-ray structure determinations for three of the new complexes.


References

[1]  A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=ee09b9f658f91ed0f26bedd1962a458bCAS |

[2]  M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqu7fO&md5=990ffa1c6fdd4c080f6072558d2bad39CAS | 24965649PubMed |

[3]  (a) A. Kumar, P. Ghosh, Eur. J. Inorg. Chem. 2012, 3955.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKitLzK&md5=812dff4b9e4dd9c82a495ff3bb9b3e80CAS |
      (b) M. K. Samantaray, M. M. Shaikh, P. Ghosh, Organometallics 2009, 28, 2267.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Topf, C. Hirtenlehner, M. Zabel, M. List, M. Fleck, U. Monkowius, Organometallics 2011, 30, 2755.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) W.-C. Shih, C.-H. Wang, Y.-T. Chang, G. P. A. Yap, T.-G. Ong, Organometallics 2009, 28, 1060.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C.-C. Tai, Y.-T. Chang, J.-H. Tsai, T. Jurca, G. P. A. Yap, T.-G. Ong, Organometallics 2012, 31, 637.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) A. J. Arduengo, F. Davidson, H. V. R. Dias, J. R. Goerlich, D. Khasnis, W. J. Marshall, T. K. Prakasha, J. Am. Chem. Soc. 1997, 119, 12742.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvVSrsw%3D%3D&md5=f815e0b5c48702be325df10a2b4ffaefCAS |
      (b) M. L. Cole, C. Jones, P. C. Junk, New J. Chem. 2002, 26, 1296.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. M. Khramov, V. M. Lynch, C. W. Bielawski, Organometallics 2007, 26, 6042.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. M. Khramov, E. L. Rosen, J. A. V. Er, P. D. Vu, V. M. Lynch, C. W. Bielawski, Tetrahedron 2008, 64, 6853.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Urban, M. Tursky, R. Frohlich, F. Glorius, Dalton Trans. 2009, 6934.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) N. Hadei, E. A. B. Kantchev, C. J. O’ Brien, M. G. Organ, Org. Lett. 2005, 7, 1991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVOisbY%3D&md5=f96484f3b3df5daaac77e5051d233244CAS | 15876037PubMed |
      (b) S. Saravanakumar, M. K. Kindermann, J. Heinicke, M. Kockerling, Chem. Commun. 2006, 640.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. D. Sanderson, J. W. Kamplain, C. W. Bielawski, J. Am. Chem. Soc. 2006, 128, 16514.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. G. Tennyson, R. J. Ono, T. W. Hudnall, D. M. Khramov, J. A. V. Er, J. W. Kamplain, V. M. Lynch, J. L. Sessler, C. W. Bielawski, Chem. – Eur. J. 2010, 16, 304.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) D. M. Khramov, V. M. Lynch, C. W. Bielawski, Organometallics 2007, 26, 6042.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2jtbzO&md5=bef155c018f63353dbbbf9979136ea46CAS |
      (b) D. G. Gusev, Organometallics 2009, 28, 6458.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Gülcemal, A. G. Gökce, B. Cetinkaya, Dalton Trans. 2013, 42, 7305.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Benhamou, N. Vujkovic, V. Cesar, H. Gornitzka, N. Lugan, G. Lavigne, Organometallics 2010, 29, 2616.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) D. Li, F. Shi, J. Peng, S. Guo, Y. Deng, J. Org. Chem. 2004, 69, 3582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1aitrg%3D&md5=06a0a919b014fc1fd35d52b294129621CAS | 15132578PubMed |
      (b) S. A. Forsyth, U. Frohlich, P. Goodrich, H. Q. N. Gunaratne, C. Hardacre, A. McKeown, K. R. Seddon, New J. Chem. 2010, 34, 723.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Z. Fei, D. Zhao, D. Pieraccini, W. H. Ang, T. J. Geldbach, R. Scopelliti, C. Chiappe, P. J. Dyson, Organometallics 2007, 26, 1588.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Chiappe, D. Pieraccini, D. Zhao, Z. Fei, P. J. Dyson, Adv. Synth. Catal. 2006, 348, 68.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Z. Mu, W. Liu, S. Zhang, F. Zhou, Chem. Lett. 2004, 33, 524.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) D. Stubba, G. Lahm, M. Geffe, J. W. Runyon, A. J. Arduengo, T. Opatz, Angew. Chem. 2015, 127, 14394.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Stubba, G. Lahm, M. Geffe, J. W. Runyon, A. J. Arduengo, T. Opatz, Angew. Chem., Int. Ed. 2015, 54, 14187.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. Opatz, A. J. Arduengo, GIT Labor-Fachz. 2016, in press.
         (d) Additional information on Xylochemistry and STANCE is available online at http://Xylochemistry.com (accessed 14 March 2016).

[9]  W. Kantlehner, S. Stefan, Patent DE102010048614 A1 2012.

[10]  (a) J. I. Bates, P. Kennepohl, D. P. Gates, Angew. Chem. 2009, 121, 10028.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. I. Bates, P. Kennepohl, D. P. Gates, Angew. Chem., Int. Ed. 2009, 48, 9844.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  D. Mendoza-Espinosa, B. Donnadieu, G. Bertrand, J. Am. Chem. Soc. 2010, 132, 7264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls12js7o%3D&md5=7c88ff008fb1b7ff427719e01b6604d2CAS | 20443633PubMed |

[12]  E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymsrnJ&md5=066607df1676b9b454847276a304d463CAS | 19900893PubMed |

[13]  J. Ruiz, A. F. Mesa, Chem. – Eur. J. 2012, 18, 4485.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFGit78%3D&md5=558695991370eff6eedcc67424fb1b0dCAS | 22407582PubMed |

[14]  (a) S. Gaillard, J.-L. Renaud, Dalton Trans. 2013, 42, 7255.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCgurY%3D&md5=70991abf2ef5095379ed82c84f61859aCAS | 23328887PubMed |
      (b) D. Mendoza-Espinosa, B. Donnadieu, G. Bertrand, Chem. – Asian J. 2011, 6, 1099.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) P. K. Majhi, S. Sauerbrey, A. Leiendecker, G. Schnakenburg, A. J. Arduengo, R. Streubel, Dalton Trans. 2013, 42, 13126.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlSitLzL&md5=175c0e407f708bbf0983f4e03a86b43cCAS | 23880962PubMed |
      (b) P. K. Majhi, S. Sauerbrey, G. Schnakenburg, A. J. Arduengo, R. Streubel, Inorg. Chem. 2012, 51, 10408.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. K. Majhi, G. Schnakenburg, A. J. Arduengo, R. Streubel, Aust. J. Chem. 2015, 68, 1282.
      (d) P. K. Majhi, G. Schnakenburg, R. Streubel, Dalton Trans. 2014, 43, 16673.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. K. Majhi, S. C. Serin, G. Schnakenburg, D. P. Gates, R. Streubel, Eur. J. Inorg. Chem. 2014, 2014, 4975.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. K. Majhi, G. Schnakenburg, Z. Kelemen, L. Nyulaszi, D. P. Gates, R. Streubel, Angew. Chem. 2013, 125, 10264.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. K. Majhi, G. Schnakenburg, Z. Kelemen, L. Nyulaszi, D. P. Gates, R. Streubel, Angew. Chem., Int. Ed. 2013, 52, 10080.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. Sauerbrey, P. K. Majhi, J. Daniels, G. Schnakenburg, G. M. Brändle, K. Scherer, R. Streubel, Inorg. Chem. 2011, 50, 793.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Sauerbrey, P. K. Majhi, G. Schnakenburg, A. J. Arduengo, R. Streubel, Dalton Trans. 2012, 41, 5368.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) S. Sauerbrey, P. K. Majhi, S. Schwieger, A. J. Arduengo, R. Streubel, Heteroat. Chem. 2012, 23, 513.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) U. Koelle, J. Organomet. Chem. 1977, 133, 53.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktlejt7w%3D&md5=b142780b79c6d3d277b3645994db62a7CAS |
      (b) J. Ruiz, A. F. Mesa, D. Sol, Organometallics 2015, 34, 5129.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J. Artus, Chem. – Eur. J. 1996, 2, 772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkslemsbs%3D&md5=8cc6a34b16a5f26ff856febe10f1cf33CAS |

[18]  Please note: IMe stands for N,N′-dimethyl-imidazol-2-ylidene (other similar NHCs are abbreviated accordingly).

[19]  K. Öfele, W. A. Herrmann, D. Mihalios, M. Elison, E. Herdtweck, W. Scherer, J. Mink, J. Organomet. Chem. 1993, 459, 177.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  C. Bolm, M. Kesselgruber, G. Raabe, Organometallics 2002, 21, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksVCnsw%3D%3D&md5=eb5ca8c6fe02ceb48a4a9a6a3502eef1CAS |

[21]  L. Messori, L. Marchetti, L. Massai, F. Scaletti, A. Guerri, I. Landini, S. Nobili, G. Perrone, E. Mini, P. Leoni, M. Pasquali, C. Gabbiani, Inorg. Chem. 2014, 53, 2396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1ejt7k%3D&md5=0bb333e5bdc4cc26f07d0a019690c77eCAS | 24547701PubMed |

[22]  E. Schuh, C. Pfluger, A. Citta, A. Folda, M. P. Rigobello, A. Bindoli, A. Casini, F. Mohr, J. Med. Chem. 2012, 55, 5518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVeqs7w%3D&md5=d81ea3a14ae7bd7d99b0212672466af2CAS | 22621714PubMed |

[23]  (a) H. M. J. Wang, C. S. Vasam, T. Y. R. Tsai, S.-H. Chen, A. H. H. Chang, I. J. B. Lin, Organometallics 2005, 24, 486.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. V. Baker, P. J. Barnard, S. J. Berners-Price, S. K. Brayshaw, J. L. Hickey, B. W. Skelton, A. H. White, J. Organomet. Chem. 2005, 690, 5625.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  D. D. Perrin, W. L. F. Armarego, Purification of Laboratory Chemicals 1988 (Pergamon Press: New York, NY) and references cited therein.

[25]     (a) G. M. Sheldrick, SHELXS97 Program for the Solution of Crystal Structure 1997 (University of Göttingen: Germany)
         (b) G. M. Sheldrick, SHELXL 97 Program for the Refinement of Crystal Structure 1997 (University of Göttingen: Germany).