Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Efficient Synthesis of All-Aryl Phenazasilines for Optoelectronic Applications

Shen Xu A , Huanhuan Li B , Yuting Tang A , Runfeng Chen A C , Xiaoji Xie B C , Xinhui Zhou A , Guichuan Xing B and Wei Huang A B C
+ Author Affiliations
- Author Affiliations

A Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China.

B Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.

C Corresponding authors. Email: iamrfchen@njupt.edu.cn; iamxjxie@njtech.edu.cn; wei-huang@njupt.edu.cn

Australian Journal of Chemistry 69(4) 419-422 https://doi.org/10.1071/CH15652
Submitted: 16 October 2015  Accepted: 1 February 2016   Published: 18 February 2016

Abstract

An efficient metal-free radical-catalyzed intramolecular silylation method has been developed for the preparation of all-aryl phenazasilines, which can be hardly synthesized by traditional synthetic methods. The easily prepared aromatic and rigid phenazasiline exhibits excellent solubility, high thermal stability, and good optoelectronic properties, which are highly attractive for optical and electronic applications in organic electronics. These advances, in the preparation of all-aryl phenazasilines, offer exciting opportunities for sophisticated molecular design and efficient synthesis of optoelectronic molecules based on the phenazasiline.


References

[1]  H. Hayashi, H. Nakao, S. Onozawa, A. Adachi, T. Hayashi, K. Okita, Polym. J. 2003, 35, 704.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Srsbg%3D&md5=d99b149a8b5fe75b9004409ddaf7b607CAS |

[2]  H. Hayashi, H. Nakao, Synth. Met. 2009, 159, 859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSjs7o%3D&md5=abfc3e38a84a9d254eddae447f6f5307CAS |

[3]  H. Hayashi, H. Nakao, T. Miyabayashi, M. Murase, Jpn. J. Appl. Phys. 2013, 52, 05DA13.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. Gilman, D. Wittenberg, J. Am. Chem. Soc. 1957, 79, 6339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXjsFejug%3D%3D&md5=b883c3956313cc956f1f695a9328b00dCAS |

[5]  (a) J. Y. Corey, K. A. Trankler, J. Braddock-Wilking, N. P. Rath, Organometallics 2010, 29, 5708.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVylt70%3D&md5=0e038ff14206ccfea9b60a9910d61faaCAS |
      (b) D. Wasserman, R. E. Jones, S. A. Robinson, J. D. Garber, J. Org. Chem. 1965, 30, 3248.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. Li, Y. Wang, K. Yuan, Y. Tao, R. Chen, C. Zheng, X. Zhou, J. Li, W. Huang, Chem. Commun. 2014, 50, 15760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVemsr3P&md5=775604a0aa654567411463f1ae5ce4e5CAS |

[7]  K. S. Yook, J. Y. Lee, Adv. Mater. 2014, 26, 4218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsFWlsbg%3D&md5=cf5c9d38d2fceed0067e77f35387a5fbCAS | 24807691PubMed |

[8]  K. Y. Sandhya, C. K. S. Pillai, M. Sato, N. Tsutsumi, J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 1527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Gnu78%3D&md5=2b4e4a23d21870d33b09d79c41f3e458CAS |

[9]  T. Ureshino, T. Yoshida, Y. Kuninobu, K. Takai, J. Am. Chem. Soc. 2010, 132, 14324.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SnsrzL&md5=a53ca76638f2be81f15d514256eda1c3CAS | 20866053PubMed |

[10]  S. Furukawa, J. Kobayashi, T. Kawashima, J. Am. Chem. Soc. 2009, 131, 14192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjt7bL&md5=3e647e3e862dcec5992dc13d985e1e07CAS | 19807175PubMed |

[11]  D. Leifert, A. Studer, Org. Lett. 2015, 17, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOgs7jN&md5=822adc5f3a4c5e7ab9c8720daeb92d0dCAS | 25536028PubMed |

[12]  J. J. Michels, M. J. O’Connell, P. N. Taylor, J. S. Wilson, F. Cacialli, H. L. Anderson, Chem. – Eur. J. 2003, 9, 6167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVem&md5=c64b5513640c8bae3cb6de65a6384064CAS | 14679528PubMed |

[13]  Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtlaqtbs%3D&md5=16eeed18a29592b7d4c30dd71b0dd123CAS | 25849370PubMed |

[14]  Z. An, C. Zheng, R. Chen, J. Yin, J. Xiao, H. Shi, Y. Tao, Y. Qian, W. Huang, Chem. – Eur. J. 2012, 18, 15655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFanur3J&md5=16547632d68613616a27fc56bedd0647CAS | 23070839PubMed |

[15]  Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlaiu7bE&md5=5b60e8ab997468acc5608f16d82b5c0eCAS | 21799992PubMed |

[16]  Y. Tao, J. Xiao, C. Zheng, Z. Zhang, M. Yan, R. Chen, X. Zhou, H. Li, Z. An, Z. Wang, H. Xu, W. Huang, Angew. Chem., Int. Ed. 2013, 52, 10491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yjtrzK&md5=1854ee8c092f5c23ed45304910268f9cCAS |

[17]  T. Chen, L. Zheng, J. Yuan, Z. An, R. Chen, Y. Tao, H. Li, X. Xie, W. Huang, Sci. Rep. 2015, 5, 10923.
         | Crossref | GoogleScholarGoogle Scholar | 26161684PubMed |

[18]  F. May, M. Al-Helwi, B. Baumeier, W. Kowalsky, E. Fuchs, C. Lennartz, D. Andrienko, J. Am. Chem. Soc. 2012, 134, 13818.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWhs7jP&md5=69a35f76c409a39c4be6cd0ca1b425f2CAS | 22845011PubMed |

[19]  J. Yin, S. Zhang, R. Chen, Q. Ling, W. Huang, Phys. Chem. Chem. Phys. 2010, 12, 15448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOrsrjF&md5=95ad3d4ca888d7126cbef5b2547bd16eCAS | 20967362PubMed |

[20]  Y. Tao, X. Guo, L. Hao, R. Chen, H. Li, Y. Chen, X. Zhang, W. Lai, W. Huang, Adv. Mater. 2015, 27, 6939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsF2ks77F&md5=5b2845b37ec1ae54028febccde796942CAS | 26421529PubMed |

[21]  Y. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 2011, 40, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWju7w%3D&md5=a195a0ed06174a9cbdcd416c5e487967CAS | 21369622PubMed |