Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Polyaniline-Supported Bacterial Biofilms as Active Matrices for Platinum Nanoparticles: Enhancement of Electroreduction of Carbon Dioxide

Ewelina Seta A , Weronika A. Lotowska A , Iwona A. Rutkowska A , Anna Wadas A , Adrianna Raczkowska B , Marta Nieckarz B , Katarzyna Brzostek B and Pawel J. Kulesza A C
+ Author Affiliations
- Author Affiliations

A Faculty of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland.

B Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland.

C Corresponding author. Email: pkulesza@chem.uw.edu.pl

Australian Journal of Chemistry 69(4) 411-418 https://doi.org/10.1071/CH15744
Submitted: 28 November 2015  Accepted: 24 January 2016   Published: 19 February 2016

Abstract

A hybrid matrix composed of a porous polyaniline underlayer, a robust bacterial biofilm and a multiwalled carbon nanotube overlayer has been demonstrated to function as highly active support for dispersed Pt catalytic nanoparticles during the electroreduction of carbon dioxide in neutral medium (phosphate buffer at pH 6.1). In contrast with bare Pt nanoparticles (deposited at a glassy carbon substrate), application of the hybrid system produces sizeable CO2-reduction currents in comparison to those originating from hydrogen evolution. The result is consistent with an enhancement in the reduction of carbon dioxide. However, the biofilm-based matrix tends to inhibit the catalytic properties of platinum towards proton discharge (competitive reaction) or even oxygen reduction. The hydrated structure permits easy unimpeded flow of aqueous electrolyte at the electrocatalytic interface. Although application of the polyaniline underlayer can be interpreted in terms of stabilization and improvement of the biofilm adherence, the use of carbon nanotubes facilitates electron transfer to Pt catalytic sites. It is apparent from the voltammetric stripping-type analytical experiments that, although formation of some methanol and methanoic acid cannot be excluded, carbon monoxide seems to be the main CO2-reduction product.


References

[1]  C. Song, Catal. Today 2006, 115, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvF2ltb4%3D&md5=767fdc6683795a41cf7363b8a030104bCAS |

[2]  G. Centi, S. Perathoner, Catal. Today 2009, 148, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqs7nO&md5=3939233e8ea1f715ea96685c332d6382CAS |

[3]  J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, Catal. Today 2009, 148, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqs7nJ&md5=cb716b5e914e883f82097369c8d42031CAS |

[4]  G. Centi, S. Perathoner, Stud. Surf. Sci. Catal. 2004, 153, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVGiur4%3D&md5=95a3ad986b89d0f33ed6c5406666db5dCAS |

[5]  A. Dibenedetto, M. Aresta, F. Nocita, C. Pastore, A. M. Venezia, F. Chirikalova, V. I. Kononenko, V. G. Shevchenko, I. A. Chupova, Catal. Today 2006, 115, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvF2ltrg%3D&md5=b921f6f316aa2dd378ffdffebb0c267dCAS |

[6]  M. Aresta, A. Dibenedetto, Dalton Trans. 2007, 2975.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsV2isLw%3D&md5=23e4ef4259ad7f8e709bdd4fb2ac0a30CAS | 17622414PubMed |

[7]  M. Jitaru, D. A. Lowy, M. Toma, B. C. Toma, L. Oniciu, J. Appl. Electrochem. 1997, 27, 875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltVaqtbo%3D&md5=81a0567159615ea2acea52939dfdea69CAS |

[8]  S. Zhu, M. Shao, J. Solid State Electrochem. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[9]  A. Wadas, I. A. Rutkowska, A. Gorczyński, M. Kubicki, V. Patroniak, P. J. Kulesza, Electrocatalysis 2014, 5, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXot1ymu7Y%3D&md5=ba3ce1c64ec608444e3e2353dc4db4b3CAS |

[10]  S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P. J. A. Kenis, J. Power Sources 2016, 301, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1KitrzF&md5=ee739a69b0707c86e818b7ac4406103eCAS |

[11]  E. E. Benson, C. P. Kubiak, A. J. Sathrum, J. M. Smieja, Chem. Soc. Rev. 2009, 38, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtLrI&md5=79522caa3e142738948352baab6c0f21CAS | 19088968PubMed |

[12]  D. T. Whipple, P. J. A. Kenis, J. Phys. Chem. Lett. 2010, 1, 3451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksbbL&md5=28449e8354df13ca5f25f8809a22a094CAS |

[13]  D. Gao, J. Wang, H. Wu, X. Jiang, S. Miao, G. Wang, X. Bao, Electrochem. Commun. 2015, 55, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  C. Fellay, P. J. Dyson, G. Laurenczy, Angew. Chem. Int. Ed. 2008, 47, 3966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVCitrk%3D&md5=c28f57eb4001303e4ecb3fcf817c1336CAS |

[15]  P. G. Jessop, F. Joó, C.-C. Tai, Coord. Chem. Rev. 2004, 248, 2425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVagsL3M&md5=4344f75d70ea6de4746d707c00c0de1aCAS |

[16]  J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, Catal. Today 2009, 148, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqs7nJ&md5=cb716b5e914e883f82097369c8d42031CAS |

[17]  P. J. Kulesza, I. S. Pieta, I. A. Rutkowska, A. Wadas, D. Marks, K. Klak, L. Stobinski, J. A. Cox, Electrochim. Acta 2013, 110, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehurzJ&md5=84f01ca06935360b46023d554a651050CAS | 24443590PubMed |

[18]  A. Lewera, K. Miecznikowski, R. Hunger, A. Kolary-Zurowska, A. Wieckowski, P. J. Kulesza, Electrochim. Acta 2010, 55, 7603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Sntr3M&md5=3507a51492f2d256b2aadde8860e4b6bCAS |

[19]  Y. Tomita, S. Teruya, O. Koga, Y. Hori, J. Electrochem. Soc. 2000, 147, 4164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVGmtLg%3D&md5=7a177e2232aec8e0c832baa7690d50d3CAS |

[20]  Q. Wang, P. Dong, Z. Huang, X. Zhang, Chem. Phys. Lett. 2015, 639, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVKktb3P&md5=19e443b9db042129f577f5d3f9c14590CAS |

[21]  M. Gangeri, S. Perathoner, S. Caudo, G. Centi, J. Amadou, D. Begin, C. Pham-Huu, M. J. Ledoux, J.-P. Tessonnier, D. S. Su, R. Schlogl, Catal. Today 2009, 143, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslynsbs%3D&md5=81f754c6c8dc0825d2d9b50ad52628c2CAS |

[22]  A. Alissandratos, H.-K. Kim, C. J. Easton, Bioresour. Technol. 2014, 164, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVSis7k%3D&md5=51d2d701d9cc24d5bf185015c830933aCAS | 24814397PubMed |

[23]  P. C. Hallenbeck, M. Grogger, D. Veverka, Electrocatalysis 2014, 5, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1GqtLk%3D&md5=e2ea0067b115b88dfa9651fdf3b3e4edCAS |

[24]  S. Y. Tan, S. Ch. Chew, S. Y. Tan, M. Givskov, L. Yang, Curr. Opin. Biotechnol. 2014, 26, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1eru7o%3D&md5=b48b2f7a4bbd9ad12289b4c2bb7082bdCAS | 24679251PubMed |

[25]  S. Parot, I. Vandecandelaere, A. Cournet, M.-L. Delia, P. Vandamme, M. Berge, C. Roques, A. Bergel, Bioresour. Technol. 2011, 102, 304.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgsLnK&md5=41b7bbd6886c36404436d92bf6a8ac82CAS | 20673715PubMed |

[26]  S. Freguia, T. Tsujimura, K. Kano, Electrochim. Acta 2010, 55, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWlsLrK&md5=6c6d5d4c17c9ea191a6e6e6b761eae18CAS |

[27]  K. P. Nevin, T. L. Woodard, A. E. Franks, Z. M. Summers, D. R. Lovley, mBio 2010, 1, e00103-10.
         | Crossref | GoogleScholarGoogle Scholar | 20714445PubMed |

[28]  D. R. Lovley, Curr. Opin. Biotechnol. 2008, 19, 564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKrtLjP&md5=450040882e14700f5c7cf1e61969b362CAS | 19000760PubMed |

[29]  H. Luo, P. E. Jenkins, Z. Ren, Environ. Sci. Technol. 2011, 45, 340.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSqtr7J&md5=f4ba11d5cfaad6cd403094ee0a30e308CAS | 21121677PubMed |

[30]  Y. Qu, Y. Feng, J. Liu, W. He, X. Shi, Q. Yang, J. Lv, B. Logan, Desalination 2013, 317, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVans74%3D&md5=a55fe366dc96872377fd8ae0bddae489CAS |

[31]  D. P. Strik, H. Terlouw, H. V. Hamelers, C. J. Buisman, Appl. Microbiol. Biotechnol. 2008, 81, 659.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCntb3E&md5=df4fb27dc509f0de54b6f3b95b01e0fbCAS | 18797867PubMed |

[32]  S. Choi, Biosens. Bioelectron. 2015, 69, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXivVShsLo%3D&md5=df96557dfcfe74f44df9f0e650c77772CAS | 25703724PubMed |

[33]  V. M. Ortiz-Martinez, M. J. Salar-Garcia, A. P. de los Rios, F. J. Hernandez-Fernandez, J. A. Egea, L. J. Lozano, Chem. Eng. J. 2015, 271, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjs1yhsrs%3D&md5=34105a7696e24a3411c7ee8668a2e7bbCAS |

[34]  K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege, W. Verstraete, Appl. Environ. Microbiol. 2004, 70, 5373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslSqu7c%3D&md5=b18511311a8bb0a5f7b42ef7845d6e2eCAS | 15345423PubMed |

[35]  G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Nature 2005, 435, 1098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltl2ntrc%3D&md5=ad0c10b2d2392be66d436501098c9e75CAS | 15973408PubMed |

[36]  Y. Yang, M. Xu, J. Guo, G. Sun, Process Biochem. 2012, 47, 1707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1akt7zJ&md5=079a305dca2996019d9f67df0a052a1aCAS |

[37]  G. A. Planes, J. L. Rodrıguez, E. Pastor, C. Barbero, Langmuir 2003, 19, 8137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1KmtrY%3D&md5=26d93115301d6d989e2e4a96a1019b0dCAS |

[38]  Y. Zhao, S. Nakanishi, K. Watanabe, K. Hashimoto, J. Biosci. Bioeng. 2011, 112, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cgt7nP&md5=6d527436f74bed39e068c7d2eca5aa26CAS | 21498110PubMed |

[39]  J.-J. Li, M.-M. Gao, G. Zhang, X.-H. Wang, S.-G. Wang, C. Song, Y.-Y. Xu, Bioresour. Technol. 2015, 177, 74.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVWhs7bO&md5=fa72a87dd908a7d4edfa59925c36418dCAS | 25479396PubMed |

[40]  Z.-H. Liao, J.-Z. Sun, D.-Z. Sun, R.-W. Si, Y.-C. Yong, Bioresour. Technol. 2015, 192, 831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVeisLjN&md5=90b33048974100982d3936bbe52ee2bfCAS | 26094048PubMed |

[41]  B. Lai, X. Tang, H. Li, Z. Du, X. Liu, Q. Zhang, Biosens. Bioelectron. 2011, 28, 373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjsrzJ&md5=e11f2ea23a20b39492e4a6842fc42bf6CAS | 21820889PubMed |

[42]  Y. Wang, B. Li, D. Cui, X. Xiang, W. Li, Biosens. Bioelectron. 2014, 51, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGqt7jL&md5=276f1d191f8e83ccf790207182f878beCAS | 23994845PubMed |

[43]  L. Dai, P. He, S. Li, Nanotechnology 2003, 14, 1081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslOktb4%3D&md5=69d63c62609458b11565f0687a81b2d4CAS |

[44]  D. Pantarotto, J. P. Briand, M. Prato, A. Bianco, Chem. Commun. 2004, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvV2ksw%3D%3D&md5=387a5f83b084a06b8075984d849c8177CAS |

[45]  S. Timur, U. Anik, D. Odaci, L. Gorton, Electrochem. Commun. 2007, 9, 1810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFClsb8%3D&md5=3fd772d137281700bc25cc61b1c369bdCAS |

[46]  A. Fàbrega, J. Vila, Enferm. Infecc. Microbiol. Clin. 2012, 30, 24.
         | Crossref | GoogleScholarGoogle Scholar | 22019131PubMed |

[47]  S. Perez-Rodriguez, N. Rillo, M. J. Lazaro, E. Pastor, Appl. Catal. B 2015, 163, 83.
         | 1:CAS:528:DC%2BC2cXht1Ghsb%2FL&md5=a8ab0ff59e5e902cf21c1cb27e513bb1CAS |

[48]  N. Todoroki, N. Yokota, S. Nakahata, H. Nakamura, T. Wadayama, Electrocatalysis 2016, 7, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1elt7rP&md5=d45e4ea4c11fa500464040a3376ecd25CAS |

[49]  X. Guo, Y. Zhang, C. Deng, X. Li, Y. Xue, Y.-M. Yan, K. Sun, Chem. Commun. 2015, 51, 1345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitValsLvI&md5=5f213127bb7034f194d21d822784de09CAS |

[50]  I. L. Escalante-Garcia, J. S. Wainright, R. F. Savinell, ECS Trans. 2013, 50, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  D. Dufour, V. Leung, C. M. Levesque, Endod. Topics 2010, 22, 2.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  L. Pires, K. Sachsenheimer, T. Kleintschek, A. Waldbaur, T. Schwartz, B. E. Rapp, Biosens. Bioelectron. 2013, 47, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Cjsrg%3D&md5=0741b39a1585f8f9db4ae6601010a3b6CAS | 23570679PubMed |