Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Au-Pd Bimetallic Nanoparticle Electrodes for Direct Electroreduction of Hexavalent Chromium Complexes

Roozbeh Siavash Moakhar A B , Mohiedin Bagheri Hariri C , Ajay Kushwaha B , Abolghasem Dolati A D , Mohammad Ghorbani A and Gregory Kia Liang Goh B D
+ Author Affiliations
- Author Affiliations

A Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11155-9466, Iran.

B Institute of Materials Research and Engineering, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Republic of Singapore.

C Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.

D Corresponding authors. Email: dolati@sharif.edu; g-goh@imre.a-star.edu.sg

Australian Journal of Chemistry 69(4) 423-430 https://doi.org/10.1071/CH15660
Submitted: 19 October 2015  Accepted: 18 February 2016   Published: 9 March 2016

Abstract

This paper reports a simple, low-cost, and effective electrochemical technique for sensing and reducing CrVI based on a Au-Pd bimetallic nanoparticle (BNP)-decorated indium tin oxide (ITO) conducting glass electrode. It was observed that the Au-Pd BNP-decorated ITO electrode could significantly boost the electrochemical reduction of CrVI when compared with either Au nanoparticle- or Pd nanoparticle-decorated ITO electrodes. These BNP-decorated electrodes exhibited a wide linear concentration range of 0.001–100 μM, a very low detection limit (signal-to-noise ratio = 3) of 0.3 nM, and a high sensitivity of 1.701 μA μM–1. From electrochemical impedance spectroscopy, it was revealed that this significant improvement was mainly due to the reduction in the charge-transfer resistance, which leads to faster free exchange of the reaction intermediates. The proposed Au-Pd BNP electrode also demonstrated excellent stability, selectivity, repeatability, and reproducibility.


References

[1]  M. Govindhan, B.-R. Adhikari, A. Chen, RSC Adv. 2014, 4, 63741.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2ksrnL&md5=58e9239eb95ace9657e5ddf4e6d7c1f3CAS |

[2]  J. P. Metters, R. O. Kadara, C. E. Banks, Analyst 2012, 137, 896.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGjurY%3D&md5=970910ca011b32ac9e7c689c1918936fCAS | 22228309PubMed |

[3]  C. M. Welch, O. Nekrassova, R. G. Compton, Talanta 2005, 65, 74.
         | 1:CAS:528:DC%2BD2cXpslyjsrc%3D&md5=1b48bf25b1bdfcde020e2c5ea2fd12b9CAS | 18969766PubMed |

[4]  K. Selvi, S. Pattabhi, K. Kadirvelu, Bioresour. Technol. 2001, 80, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslCjsbc%3D&md5=238c042db1c87e87b9af9e235b487b28CAS | 11554606PubMed |

[5]  A. Zhitkovich, Chem. Res. Toxicol. 2011, 24, 1617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVWkurs%3D&md5=a542f0550e9cea4d3820c9c22903f2edCAS | 21766833PubMed |

[6]  M. Chebeir, H. Liu, Environ. Sci. Technol. 2016, 50, 701.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFKlu7nO&md5=5576335b7671db3e4de8bd13e09df0ebCAS | 26647114PubMed |

[7]  See pp. 188–222 in: W. Maret, A. Wedd, Binding, Transport and Storage of Metal Ions in Biological Cells 2014 (Royal Society of Chemistry: London).

[8]  I. Mulyani, A. Levina, P. Lay, Angew. Chem., Int. Ed. Engl. 2004, 43, 4504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFylsrk%3D&md5=868f0c5a12935768e35ec36f175ac646CAS |

[9]  See pp. 835–856 in: J. Reedijk, K. Poeppelmeier, Comprehensive Inorganic Chemistry II, 2nd edn 2013 (Elsevier Science: Amsterdam).

[10]  A. Levina, P. A. Lay, Coord. Chem. Rev. 2005, 249, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVCrtw%3D%3D&md5=45de53dc8c0a92e1ec3d55100a8ef691CAS |

[11]  J. M. Eckert, R. J. Judd, P. A. Lay, Inorg. Chem. 1987, 26, 2189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlSisb8%3D&md5=036ba2a73b6a01fdf58b2f92cd26b4f5CAS |

[12]  Y. Wang, K. Rajeshwar, J. Electroanal. Chem. 1997, 425, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2ksb4%3D&md5=65ac4b86938fbddddb8e44236f497f2bCAS |

[13]  M. J. Shaw, P. R. Haddad, Environ. Int. 2004, 30, 403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFWgt7k%3D&md5=67aa991d0305f0de2fe4bfdf8f09d401CAS | 14987873PubMed |

[14]  N. Freslon, G. Bayon, D. Birot, C. Bollinger, J. A. Barrat, Talanta 2011, 85, 582.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFGqtLo%3D&md5=032004b389d04d3b96a142aff488bce9CAS | 21645745PubMed |

[15]  Q. Li, K. J. Morris, P. K. Dasgupta, I. M. Raimundo, H. Temkin, Anal. Chim. Acta 2003, 479, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFClt7w%3D&md5=9dde0c5bdf44a4f15b654752406cb0c6CAS |

[16]  R. Ouyang, S. A. Bragg, J. Q. Chambers, Z.-L. Xue, Anal. Chim. Acta 2012, 722, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2jsrc%3D&md5=176692affae5a629a79aa07ff935045bCAS | 22444528PubMed |

[17]  A. Manova, S. Humenikova, M. Strelec, E. Beinrohr, Microchim. Acta 2007, 159, 41.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvVaqsbo%3D&md5=8b0bd8f8cb41713af5071c07d8d7b146CAS |

[18]  T. Hezard, K. Fajerwerg, D. Evrard, V. Collière, P. Behra, P. Gros, J. Electroanal. Chem. 2012, 664, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsbzF&md5=2db3ba3d97151ad40e239ddfba161cf0CAS |

[19]  G. Hanrahan, D. G. Patil, J. Wang, J. Environ. Monit. 2004, 6, 657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1WqsL8%3D&md5=c26ce43d54a32d51fff25af355355cdcCAS | 15292947PubMed |

[20]  M. S. Hsu, Y. L. Chen, C. Y. Lee, H. T. Chiu, ACS Appl. Mater. Interfaces 2012, 4, 5570.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksLvE&md5=000959798b42cecbca2f1e76de6e2687CAS | 23020235PubMed |

[21]  M. C. Tsai, P. Y. Chen, Talanta 2008, 76, 533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Oqtr8%3D&md5=b4f33e180d51edb98abf4ea8069f6d06CAS | 18585318PubMed |

[22]  R. Ouyang, W. Zhang, S. Zhou, Z.-L. Xue, L. Xu, Y. Gu, Y. Miao, Electrochim. Acta 2013, 113, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGrsL3M&md5=3985d91d341d2955876a75bf2e938c52CAS | 24771881PubMed |

[23]  Y. Yun, Z. Dong, V. N. Shanov, A. Doepke, W. R. Heineman, H. B. Halsall, A. Bhattacharya, D. K. Y. Wong, M. J. Schulz, Sens. Actuators, B 2008, 133, 208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOrtb8%3D&md5=e44262664c223b031f0b764d286bf09cCAS |

[24]  D. Wang, Y. Li, Adv. Mater. 2011, 23, 1044.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFajs7c%3D&md5=ca21a575b998a5c8465b29ac999694f9CAS | 21218429PubMed |

[25]  J. Tang, X.-C. Tian, W.-H. Pang, Y.-Q. Liu, J.-H. Lin, Electrochim. Acta 2012, 81, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWlsbbL&md5=e1e8bdb7929f89eff55b9c9c2066eab2CAS |

[26]  R. Ferrando, J. Jellinek, R. L. Johnston, Chem. Rev. 2008, 108, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVCkt7w%3D&md5=58c3c9f1c02e2fa8b70e5fc9449fba86CAS | 18335972PubMed |

[27]  M. Hirano, K. Enokida, K. Okazaki, S. Kuwabata, H. Yoshida, T. Torimoto, Phys. Chem. Chem. Phys. 2013, 15, 7286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVartb8%3D&md5=24fdeeb0e408e0d85f916cf180749526CAS | 23575517PubMed |

[28]  A. Maringa, P. Mashazi, T. Nyokong, J. Colloid Interface Sci. 2015, 440, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyktb%2FL&md5=9796fef2d79cbd547227f494e22ef989CAS | 25460701PubMed |

[29]  D. J. Chadderdon, L. Xin, J. Qi, Y. Qiu, P. Krishna, K. L. More, W. Li, Green Chem. 2014, 16, 3778.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrs7vK&md5=b31e40783a981239147e4600170000daCAS |

[30]  A. Villa, M. Schiavoni, S. Campisi, G. M. Veith, L. Prati, ChemSusChem 2013, 6, 609.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFWrsL4%3D&md5=809b6fc946c273b1ab7186a3ba9c0114CAS | 23495091PubMed |

[31]  A. K. Das, C. R. Raj, J. Electroanal. Chem. 2014, 717–718, 140.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  M. A. Omole, I. O. K’Owino, O. A. Sadik, Appl. Catal., B 2007, 76, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKlt7nL&md5=dba5b22c6bec4bf143f20cab5862ffddCAS |

[33]  T. N. Ravishankar, S. Muralikrishna, K. Suresh Kumar, G. Nagaraju, T. Ramakrishnappa, Anal. Methods 2015, 7, 3493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksV2gsrs%3D&md5=2fd79e5f2d388d71f3daa50a84c71c0eCAS |

[34]  Joint Committee on Powder Diffraction Standards Ref. Code 00–001–1201 (n.d.).

[35]  Joint Committee on Powder Diffraction Standards Cards 00–004–0784 (n.d.).

[36]  A. Abbaspour, F. Norouz-Sarvestani, Int. J. Hydrogen Energy 2013, 38, 1883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFSht7nN&md5=978e7976312297bf4325ba503f0faa25CAS |

[37]  B. D. Cullity, Elements of X-ray Diffraction, 2nd edn 1978 (Addison Wesley Publishing Company: London).

[38]  Y. Wu, H. Liu, J. Zhang, F. Chen, J. Phys. Chem. C 2009, 113, 14689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotV2lt78%3D&md5=56f333ffb8a9c56671907ee5be47a67eCAS |

[39]  N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, J. Phys. Chem. 1992, 96, 9927.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Srsbc%3D&md5=9b6f3a6a124413d5e4956f8ca622fc5eCAS |

[40]  S. Bakkali, R. Touir, M. Cherkaoui, M. Ebn Touhami, Surf. Coat. Technol. 2015, 261, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFCntLrF&md5=c5982d7cba900db44150f7b43cb41075CAS |

[41]  M. B. Hariri, A. Dolati, R. S. Moakhar, J. Electrochem. Soc. 2013, 160, D279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFWmtrk%3D&md5=856491fe058af27c22effefece175108CAS |

[42]  D. Nkosi, J. Pillay, K. Ozoemena, K. Nouneh, M. Oyama, Phys. Chem. Chem. Phys. 2010, 12, 604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SrurfM&md5=efdcefe364ef8f2b0b36f8469a1cfb26CAS | 20066346PubMed |

[43]  W. Jin, K. Yan, RSC Adv. 2015, 5, 37440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFClsrc%3D&md5=1d8e4428c736a8be513fd010aa3c610dCAS |

[44]  T. L. Gerke, B. J. Little, J. B. Maynard, Sci. Total Environ. 2016, 541, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFajtr3J&md5=b5faad0678e5033cc653467288a2e3c8CAS | 26409148PubMed |

[45]  E. Kaprara, N. Kazakis, K. Simeonidis, S. Coles, A. I. Zouboulis, P. Samaras, M. Mitrakas, J. Hazard. Mater. 2015, 281, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ektb7O&md5=468d4c10a82bbca29aa1825687552541CAS | 25085618PubMed |