Synthesis of Sulfonyldiazomethanes and Acetyldiazomethanes via an Alumina-Mediated Decarboxylation Strategy
Yiyong Yan A C , Gaoyuan Ma B , Wei Wei B and Jing Zhao A B CA School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 51800, China.
B State Key laboratory of Pharmaceutical Biotechnology, Institute of Chemistry and Biomedical Sciences, School of Life Sciences, Nanjing University, Nanjing 210093, China.
C Corresponding authors. Email: yanyy@pkusz.edu.cn; jingzhao@nju.edu.cn
Australian Journal of Chemistry 69(2) 239-242 https://doi.org/10.1071/CH15637
Submitted: 10 October 2015 Accepted: 14 December 2015 Published: 18 January 2016
Abstract
Diazo compounds are widely adopted in organic synthesis due to their carbine characteristics. One of the most interesting diazo compounds is diazolsulfonyl. Here, in the current study, we found that diazolsufonyl compounds could be prepared with moderate to excellent yield through decarboxylation of diazosulfonyl acetates by neutral alumina. We hope that this mild and simple method might inspire wider application of these useful compounds.
References
[1] (a) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds 1998 (Wiley Interscience: New York, NY)(b) T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. P. Doyle, M. A. McKervey, Chem. Commun. 1997, 11, 983.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Zhang, J. Wang, Eur. J. Org. Chem. 2011, 2011, 1015.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislSjt7o%3D&md5=e09c015c6903ba85e27a133aa5efb28dCAS | 12683775PubMed |
(b) G. Maas, Chem. Soc. Rev. 2004, 33, 183.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. P. Doyle, J. Org. Chem. 2006, 71, 9253.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Caballero, A. Prieto, M. Diaz-Requejo, P. J. Perez, Eur. J. Inorg. Chem. 2009, 2009, 1137.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Qian, J. Zhang, Chem. Soc. Rev. 2015, 44, 677.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) A. Padwa, D. J. Austin, Angew. Chem., Int. Ed. Engl. 1994, 33, 1797.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704.
| Crossref | GoogleScholarGoogle Scholar |
(e) H. M. L. Davies, D. Morton, Chem. Soc. Rev. 2011, 40, 1857.
| Crossref | GoogleScholarGoogle Scholar |
(f) Z. Liu, J. Wang, J. Org. Chem. 2013, 78, 10024.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) H. Meier, K.-P. Zeller, Angew. Chem., Int. Ed. Engl. 1975, 14, 32.
| Crossref | GoogleScholarGoogle Scholar |
(b) W. Kirmse, Eur. J. Org. Chem. 2002, 2002, 2193.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Wang, Y. Hou, J. Chem. Soc., Perkin Trans. 1 1998, 12, 1919.
| Crossref | GoogleScholarGoogle Scholar |
(d) H. Yang, K. Foster, C. R. J. Stephenson, W. Brown, E. Roberts, Org. Lett. 2000, 2, 2177.
| Crossref | GoogleScholarGoogle Scholar |
(e) B. Ma, F.-L. Chen, X.-Y. Xu, Y.-N. Zhang, L.-H. Hu, Adv. Synth. Catal. 2014, 356, 416.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) H. M. L. Davies, Eur. J. Org. Chem. 1999, 1999, 2459.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z. Zhang, J. Wang, Tetrahedron 2008, 64, 6577.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Zhang, J. Wang, Chem. Commun. 2009, 36, 5350.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Kaschel, T. F. Schneider, D. B. Werz, Angew. Chem., Int. Ed. 2012, 51, 7085.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) M. Hrytsak, N. Etkin, T. Durst, Tetrahedron Lett. 1986, 27, 5679.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvFKitLY%3D&md5=b35db179fb0c061185459dca7e9fd014CAS |
(b) J. P. John, A. V. Novikov, Org. Lett. 2007, 9, 61.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. Zhu, J. V. Ruppel, H. Lu, L. Wojtas, X. P. Zhang, J. Am. Chem. Soc. 2008, 130, 5042.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. J. Flynn, C. J. Elcoate, S. E. Lawrence, A. R. Maguire, J. Am. Chem. Soc. 2010, 132, 1184.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) D. A. Bachovchin, A. M. Zuhl, A. E. Speers, M. R. Wolfe, E. Weerapana, S. J. Brown, H. Rosen, B. F. Cravatt, J. Med. Chem. 2011, 54, 5229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotlajtLY%3D&md5=8145a26522e92a40717fe1814d99ab24CAS | 21639134PubMed |
(b) K. Shyam, P. G. Penketh, R. P. Baumann, R. A. Finch, R. Zhu, Y.-L. Zhu, A. C. Sartorelli, J. Med. Chem. 2015, 58, 3639.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. F. Morgan, I. A. Hollingsworth, J. A. Bull, Org. Biomol. Chem. 2015, 13, 5265.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) A. M. van Leusen, J. Strating, Recl. Trav. Chim. Pays-Bas 1965, 84, 151.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXntl2lsQ%3D%3D&md5=266746e1f7914ef2ac588e2b02261fbbCAS |
(b) A. M. van Leusen, J. Strating, Org. Synth. 1977, 57, 95.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) M. P. Doyle, V. Bagheri, T. J. Wandless, N. K. Harn, D. A. Brinker, C. T. Eagle, K.-L. Loh, J. Am. Chem. Soc. 1990, 112, 1906.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlylsL8%3D&md5=b78fb145715100a254f61e0f238af41cCAS |
(b) F. G. West, B. N. Naidu, J. Org. Chem. 1994, 59, 6051.
| Crossref | GoogleScholarGoogle Scholar |
(c) X. Qi, J. M. Ready, Angew. Chem., Int. Ed. 2007, 46, 3242.
| Crossref | GoogleScholarGoogle Scholar |