One-Pot Synthesis of Substituted Piperidinones and 3,4-Dihydropyrimidinones Using a Highly Active and Recyclable Supported Ionic Liquid Phase Organocatalyst
Pankaj Sharma A , Manjulla Gupta A , Monika Gupta A B and Rajive Gupta AA Department of Chemistry, University of Jammu, Jammu-180006, India.
B Corresponding author. Email: monika.gupta77@rediffmail.com
Australian Journal of Chemistry 69(2) 230-238 https://doi.org/10.1071/CH15133
Submitted: 17 March 2015 Accepted: 12 July 2015 Published: 11 August 2015
Abstract
1-Ethyl-3-methylimidazolium ethyl sulfate was synthesized and its supported ionic liquid phase form was prepared and used as an organocatalyst for the synthesis of substituted piperidinones and 3,4-dihydropyrimidinones. The ionic liquid was characterized by 1H NMR, 13C NMR, and mass spectrometry. The catalyst is novel, stable, completely heterogeneous, and recyclable for several times and can be easily recovered by filtration. It was characterized with scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy techniques. The workup procedures are very simple, and products were obtained in good-to-excellent yields with reasonable purities without the need for further chromatographic purification.
References
[1] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2007 (Wiley-VCH: Weinheim).[2] C. P. Mehnert, R. A. Cook, N. C. Dispenziere, M. A. Feworki, J. Am. Chem. Soc. 2002, 124, 12932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Ghs7c%3D&md5=8fd0a17107522086a5933166ad44399eCAS | 12405804PubMed |
[3] (a) C. P. Mehnert, Chem. – Eur. J. 2005, 11, 50.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Eur. J. Chem. 2006, 2006, 695.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. J. Dyson, T. J. Geldbach, Electrochem. Soc. Interface 2007, 16, 50.
| 1:CAS:528:DC%2BD1cXjs1Wktr4%3D&md5=55ef46b8809f059d8c8240771ee84512CAS |
[5] (a) Z. L. Xie, X. Huang, A. Taubert, Adv. Funct. Mater. 2014, 24, 2837.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ygsr8%3D&md5=6f8b4bdf49abb6487a44320055c6d34dCAS |
(b) J. Le Bideau, L. Viau, A. Vioux, Chem. Soc. Rev. 2011, 40, 907.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Qiao, H. Hagiwara, C. Yokoyama, J. Mol. Catal. A: Chem. 2006, 246, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslequ7o%3D&md5=93c2c62e9c206dc679949be183d0db53CAS |
[7] A. Chrobok, S. Baj, W. Pudlo, A. Jarzebski, Appl. Catal., A 2009, 366, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvF2ntL4%3D&md5=f3e80a6b78ee739675f58fb42346f20fCAS |
[8] R. Sugimura, K. Qiao, D. Tomida, C. Yokoyama, Catal. Commun. 2007, 8, 770.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWms70%3D&md5=519d7627ea77b67bb16254e57875fe4aCAS |
[9] A. S. Amarasekara, O. S. Owereh, Catal. Commun. 2010, 11, 1072.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVWrsr4%3D&md5=48136eff14d94a7cfe9412b90b8434fcCAS |
[10] (a) J. Arras, M. Steffan, Y. Shayeghi, P. Claus, Chem. Commun. 2008, 4058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKisrjO&md5=d2afeeb28d6670e76f26e4e3a144d2ecCAS |
(b) C. O. Kappe, Eur. J. Med. Chem. 2000, 35, 1043.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Arras, M. Steffan, Y. Shayeghi, D. Ruppert, P. Claus, Green Chem. 2009, 11, 716.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) R. Skoda-Foldes, Molecules 2014, 19, 8840.
| Crossref | GoogleScholarGoogle Scholar | 24972271PubMed |
(b) M. N. Haa, R. Whiting, S. Han, Y. Wang, Asian J. Chem. 2013, 25, 2722.
[12] L. L. Zhu, L. Guo, Z. J. Zhang, J. Chen, S. M. Zhang, Sci. China: Chem. 2012, 55, 1479.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCktLjK&md5=38436fe5860d3f04e2992a818c661fe5CAS |
[13] A. A. Watson, G. W. J. Fleet, N. Arano, R. J. Molneax, R. J. Nugh, Phytochemistry 2001, 56, 265.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpslOgsQ%3D%3D&md5=b15bc558f4f1917cd1e9eb4a9aa78995CAS | 11243453PubMed |
[14] B. Ileana, V. Dobre, I. Niculescu-Duvaz, J. Prakt. Chem. 1985, 327, 677.
[15] H. I. El-Subbagh, S. M. Abu-Zaid, M. A. Mahran, F. A. Badria, A. M. Al-Obaid, J. Med. Chem. 2000, 43, 2915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFGrtrg%3D&md5=39d819c172edceb6f3cb80c5e19a7766CAS | 10956199PubMed |
[16] B. Das, S. Srivastava, S. C. Dinda, Y. R. Prasad, Pharma Chem. 2013, 5, 161.
| 1:CAS:528:DC%2BC3sXjvVajt7k%3D&md5=35bbe96c416e900c67c6960026ca123eCAS |
[17] K. Tanaka, N. Minami, Jpn. Kokai Tokkyo Koho, JP 63, 275, 582, 1988, 5 pp. [Chem. Abstr. 1989, 110, 231635s].
[18] R. E. Hagenbach, H. Gysin, Experientia 1952, 8, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXksVGnsg%3D%3D&md5=6b056318226e141e0ee58c8ca77a4933CAS | 14945453PubMed |
[19] D. Bhakiaraj, T. Elavarasan, M. Gopalakrishnan, Pharma Chem. 2014, 6, 243.
[20] P. Tripathi, A. C. Tripathi, V. Chawla, S. K. Saraf, Eur. J. Med. Chem. 2014, 82, 439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVCqu73P&md5=771fcfa6d8bb0935385c1edc80a515e5CAS | 24929294PubMed |
[21] N. S. Prostakov, L. A. Gaivoronskaya, Chem. Rev. 1978, 47, 447.
[22] R. N. Sharma, R. Patel, Int. J. PharmTech. Res. 2014, 6, 129.
| 1:CAS:528:DC%2BC2cXhtlOhtLvK&md5=9266fa0fdf794c2e33b0c793dec84586CAS |
[23] Y. Yu, D. Liu, C. Liu, G. Luo, Bioorg. Med. Chem. Lett. 2007, 17, 3508.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtValsbY%3D&md5=18df672aa164c3ad4d351d6bce66bbb9CAS | 17490874PubMed |
[24] N. Azizi, S. Dezfuli, M. M. Hahsemi, Sci. World J. 2012, 2012, 1.
[25] A. Debache, L. Chouguiat, R. Boulcina, B. Carboni, Open Org. Chem. J. 2012, 6, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsF2ru7g%3D&md5=099a0059089a3614559eaee87e9b9e62CAS |
[26] Y. Chan, J. Balle, J. K. Sparrow, P. D. W. Boyd, M. A. Brimble, D. Barker, Tetrahedron 2010, 66, 7179.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1Cmtb0%3D&md5=6a27b404575d7419b3a4b8f634552c7cCAS |
[27] J. Barluenga, F. Azhar, R. Cristina, V. Carlos, F. Monica, C. Maria-Paz, J. Trujillo, Chem. – Eur. J. 1996, 2, 805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkslemt74%3D&md5=c755e3473cbfa1dc4cbd8bb270d5f9b6CAS |
[28] P. Parthiban, S. Balasubramanian, G. Aridoss, S. Kabilan, Spectrochim. Acta, Part A 2008, 70, 11.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3psVKjtQ%3D%3D&md5=96a3f0ec24cf0ebaeda9a6b49ea6b94bCAS |
[29] J. Bosch, M. Rubiralta, M. Moral, M. Valls, J. Heterocycl. Chem. 1983, 20, 595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFCkur4%3D&md5=d1484b5440c94365669a7cdfefad37e9CAS |
[30] F. Aznar, A. B. Garcia, M. P. Cabal, Adv. Synth. Catal. 2006, 348, 2443.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWgtL7E&md5=710ed6419571c3c2680f3c141a8d65b5CAS |
[31] M. Srinivasan, S. Perumal, S. Selvaraj, ARKIVOC 2005, 2005, 201.
| Crossref | GoogleScholarGoogle Scholar |
[32] (a) C. Aprile, F. Giacalone, M. Gruttadauria, A. M. Marculescu, R. Noto, J. D. Revell, H. Wennemers, Green Chem. 2007, 9, 1328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemu7bF&md5=bce4ecbb97225732aa7dddaa20a5a4c5CAS |
(b) M. S. Rasalkar, M. K. Potdar, S. S. Mohile, M. M. Salunke, J. Mol. Cat. A 2005, 235, 267.
| Crossref | GoogleScholarGoogle Scholar |
[33] P. Sharma, M. Gupta, Green Chem. 2015, 17, 1100.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2ksb%2FI&md5=2e5f68493b64c7b81bbda4caa7a6f3e6CAS |
[34] C. R. Noller, V. Baliah, J. Am. Chem. Soc. 1948, 70, 3853.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaH1MXmsVKk&md5=abc89a6f618d031690895752566ac593CAS | 18121891PubMed |
[35] V. Baliah, V. Gopalakrishnan, J. Indian Chem. Soc. 1954, 31, 250.
| 1:CAS:528:DyaG2MXltlGgsQ%3D%3D&md5=4fe3533931b7fdaf4e41cd3624f0009fCAS |
[36] P. Valentina, K. Ilango, P. Parshad, K. Basedia, Asian J. Chem. 2009, 21, 6116.
| 1:CAS:528:DC%2BD1MXhtVGhtrjK&md5=e36a3fa4b876d5a129864ecb9786dcbbCAS |
[37] J. Jayabharathi, R. Sivakumar, A. Praveena, Med. Chem. Res. 2005, 14, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVCmsLw%3D&md5=264a6a6cc0b553acce2e9128aa8098e3CAS |
[38] H. N. Karade, M. Sathe, M. P. Kaushik, Molecules 2007, 12, 1341.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSitL%2FE&md5=24eb1a9c634fb44b52fab8e2b9067aa0CAS | 17909490PubMed |
[39] K. K. Pasunooti, H. Chai, C. N. Jensen, B. K. Gorityala, S. Wang, X. W. Liu, Tetrahedron Lett. 2011, 52, 80.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFehu7fP&md5=4bdd2f20760cac3087b2ab0c09200fceCAS |
[40] N. F. Fu, Y. F. Yuan, Z. Cao, J. T. Wang, C. Peppe, Tetrahedron 2002, 58, 4801.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKmsLY%3D&md5=fe906da373a60c4d81daf0b36cc2de02CAS |
[41] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |
[42] Q. Sun, Y.-Q. Wang, Z.-M. Ge, T.-M. Cheng, R.-T. Li, Synthesis 2004, 1047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktFKiur8%3D&md5=00eebf54dba7a686e8aa25eef36691e0CAS |