RhI-Catalyzed Stille-Type Coupling of Diazoesters with Aryl Trimethylstannanes
Zhen Liu A , Ying Xia A C , Sheng Feng A , Shuai Wang A , Di Qiu A , Yan Zhang A and Jianbo Wang A B CA Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
B State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
C Corresponding authors. Email: xiayingbit@163.com; wangjb@pku.edu.cn
Australian Journal of Chemistry 68(9) 1379-1384 https://doi.org/10.1071/CH15218
Submitted: 26 April 2015 Accepted: 28 May 2015 Published: 17 June 2015
Abstract
A RhI-catalyzed cross-coupling of diazoester with arylstannane was developed. This reaction represents the first Stille-type coupling that uses a diazo compound as the coupling partner. The reaction is operationally simple and can be carried out under mild conditions, thus providing an alternative approach for the synthesis of α-aryl esters. RhI–carbene migratory insertion process is suggested to be involved as the key step in this Stille-type coupling.
References
[1] (a) For reviews on diazo compounds, see: T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVyhsbY%3D&md5=a4e281b6e27bf9480081d07e83e57989CAS |
(b) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. P. Doyle, M. A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds 1998 (Wiley-Interscience: New York, NY).
(d) H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861.
| Crossref | GoogleScholarGoogle Scholar |
(e) Z. Zhang, J. Wang, Tetrahedron 2008, 64, 6577.
| Crossref | GoogleScholarGoogle Scholar |
(f) H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704.
| Crossref | GoogleScholarGoogle Scholar |
[2] K. L. Greenman, D. S. Carter, D. L. Van Vranken, Tetrahedron 2001, 57, 5219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktF2nu7c%3D&md5=4757743a62d7d60dd3128f73e9a927fcCAS |
[3] (a) For reviews, see: Y. Zhang, J. Wang, Eur. J. Org. Chem. 2011, 1015.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. Barluenga, C. Valdés, Angew. Chem., Int. Ed. 2011, 50, 7486.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560.
| Crossref | GoogleScholarGoogle Scholar |
(d) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res. 2013, 46, 236.
| Crossref | GoogleScholarGoogle Scholar |
(e) Y. Xia, Y. Zhang, J. Wang, ACS Catal. 2013, 3, 2586.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y.-K. Tsoi, Z. Zhou, W.-Y. Yu, Org. Lett. 2011, 13, 5370.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFCgsLjO&md5=9c6bcc6b1cb95fcdc378a85805335ae5CAS |
[5] J. Ghorai, P. Anbarasan, J. Org. Chem. 2015, 80, 3455.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktFanurg%3D&md5=0969e34db4f0a2a2cd945aa46cf83995CAS | 25759939PubMed |
[6] Y. Xia, Z. Liu, S. Feng, F. Ye, Y. Zhang, J. Wang, Org. Lett. 2015, 17, 956.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisF2hsro%3D&md5=3a47f03a0b8949fa95aa917175290d1eCAS | 25671642PubMed |
[7] (a) For reviews, see: J. K. Stille, Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Kosugi, K. Fugami, in Handbook of Organopalladium Chemistry for Organic Synthesis (Ed. E. Negishi) 2002, pp. 263–283 (Wiley: New York, NY).
(c) J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359.
| Crossref | GoogleScholarGoogle Scholar |
(d) P. Espinet, A. M. Echavarren, Angew. Chem., Int. Ed. 2004, 43, 4704.
(e) C. C. C. Johansson Seechurn, M. O. Kitching, T. J. Colacot, V. Snieckus, Angew. Chem., Int. Ed. 2012, 51, 5062.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) E. Alonso, H. Fuwa, C. Vale, Y. Suga, T. Goto, Y. Konno, M. Sasaki, F. M. LaFerla, M. R. Vieytes, L. Giménez-Llort, L. M. Botana, J. Am. Chem. Soc. 2012, 134, 7467.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVWlu7o%3D&md5=49c5dfea4af1137c28faaea7f8af3108CAS | 22475455PubMed |
(b) J. Li, P. Yang, M. Yao, J. Deng, A. Li, J. Am. Chem. Soc. 2014, 136, 16477.
| Crossref | GoogleScholarGoogle Scholar |
[9] D. Qiu, H. Meng, L. Jin, S. Wang, S. Tang, X. Wang, F. Mo, Y. Zhang, J. Wang, Angew. Chem., Int. Ed. 2013, 52, 11581.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSrs7zJ&md5=bea83d880fe09348deaeea692a2e522dCAS |
[10] D. Qiu, S. Wang, S. Tang, H. Meng, L. Jin, F. Mo, Y. Zhang, J. Wang, J. Org. Chem. 2014, 79, 1979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWgsLk%3D&md5=add41d6cc73a46ae71354e0521938b4aCAS | 24521293PubMed |
[11] Aryl organotin reagents were initially tested in the reaction with trimethylsilyldiazomethane (TMSCHN2) under palladium catalysis, but only poor results were obtained. See ref. [2].
[12] For a review on RhI-catalyzed coupling with organometallic compounds, see: K. Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1ygtL0%3D&md5=c1661df97188edc9a133c992b048b76aCAS | 12517183PubMed |
[13] For experimental and computational study on RhI–carbene, see: R. Cohen, B. Rybtchinski, M. Gandelman, H. Rozenberg, J. M. L. Martin, D. Milstein, J. Am. Chem. Soc. 2003, 125, 6532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWitLg%3D&md5=284996f1332f0c0aae509cb7477023b8CAS | 12785793PubMed |
[14] (a) For examples on catalytic RhI–carbene migratory insertions, see refs [4–6], and also see: Y. Xia, Z. Liu, Z. Liu, R. Ge, F. Ye, M. Hossain, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2014, 136, 3013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKnsLs%3D&md5=fa89671b1fb59394b2f901c8296a253aCAS | 24512084PubMed |
(b) A. Yada, S. Fujita, M. Murakami, J. Am. Chem. Soc. 2014, 136, 7217.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) For selected reviews, see: C. C. C. Johansson, T. J. Colacot, Angew. Chem., Int. Ed. 2010, 49, 676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1aqsg%3D%3D&md5=77d43176291c5389929eb4864f126417CAS |
(b) F. Bellina, R. Rossi, Chem. Rev. 2010, 110, 1082.
| Crossref | GoogleScholarGoogle Scholar |
[16] Y. Xi, Y. Su, Z. Yu, B. Dong, E. J. McClain, Y. Lan, X. Shi, Angew. Chem., Int. Ed. 2014, 53, 9817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WlsbfK&md5=78290887017c1cabe1588e9df28bfb2bCAS |
[17] R. B. Kothapalli, R. Niddana, R. Balamurugan, Org. Lett. 2014, 16, 1278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFOgsrc%3D&md5=223f59f354f5981bee56832896ca555aCAS | 24559219PubMed |
[18] T. Kametani, K. Kigasawa, M. Hiiragi, T. Aoyama, J. Med. Chem. 1971, 14, 1235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XpsVKitQ%3D%3D&md5=b30fe8d2c1866ff0e4a9bc1c9f34a7dfCAS | 5116243PubMed |