Decarboxylation versus Acetonitrile Loss in Silver Acetate and Silver Propiolate Complexes, [RCO2Ag2(CH3CN)n]+ (where R = CH3 and CH3C≡C; n = 1 and 2)
Jiawei Li A B C , George N. Khairallah A B C D and Richard A. J. O’Hair A B C EA School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.
B Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Vic. 3010, Australia.
C ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, The University of Melbourne, Melbourne, Vic. 3010, Australia.
D Current address: Accurate Mass Scientific Pty Ltd, PO Box 92, Keilor, Vic. 3036, Australia.
E Corresponding author. Email: rohair@unimelb.edu.au
Australian Journal of Chemistry 68(9) 1385-1391 https://doi.org/10.1071/CH15210
Submitted: 24 April 2015 Accepted: 28 May 2015 Published: 1 July 2015
Abstract
Gas-phase experiments using collision-induced dissociation in an ion trap mass spectrometer have been used in combination with density functional theory (DFT) calculations (at the B3LYP/SDD6–31+G(d) level of theory) to examine the competition between decarboxylation and loss of a coordinated acetonitrile in the unimolecular fragmentation reactions of the silver acetate and silver propiolate complexes, [RCO2Ag2(CH3CN)n]+ (where R = CH3 and CH3C≡C; n = 1 and 2), introduced into the gas-phase via electrospray ionisation. When R = CH3, loss of acetonitrile is the sole reaction channel observed for both complexes (n = 1 and 2), consistent with DFT calculations, which highlight that the barriers for decarboxylation 2.18 eV (n = 2) and 1.96 eV (n = 1) are greater than the binding energies of the coordinated acetonitriles (1.60 eV for n = 2; 1.64 eV for n = 1). In contrast, when R = CH3C≡C, decarboxylation is the main fragmentation pathway observed for both complexes (n = 1 and 2), with loss of acetonitrile only being a minor product channel. This is consistent with DFT calculations, which reveal that the barriers for decarboxylation are 1.17 eV (n = 2) and 1.16 eV (n = 1), which are both below the binding energies of the coordinated acetonitriles (1.55 eV for n = 2; 1.56 eV for n = 1). The barrier for decarboxylation of [CH3C≡CCO2Ag2]+ is 1.22 eV, which is less than the 2.06 eV reported for decarboxylation of [CH3CO2Ag2]+ (Al Sharif et al. Organometallics, 2013, 32, 5416). The observed ease of decarboxylation of silver propiolate complexes in the gas-phase is consistent with the recently reported use of silver salts in metal catalysed decarboxylative C–C and C–X bond forming reactions of propiolic acids.
References
[1] (a) U. Halbes-Letinois, J.-M. Weibel, P. Pale, Chem. Soc. Rev. 2007, 36, 759.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslCltL4%3D&md5=77ef83f1eddadeb55cd7bee26a04e1fdCAS | 17471400PubMed |
(b) Y. Yamamoto, Chem. Rev. 2008, 108, 3199.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. H. Pouwer, C. M. Williams, in Silver in Organic Chemistry (Ed. M. Harmata) 2010, p. 1–41 (Wiley: Hoboken, NJ).
[2] A. Ruaudel-teixier, Mol. Cryst. Liq. Cryst. 1983, 96, 365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltVGrsr0%3D&md5=80a639cc8b2c2bd954ce5b0bdd459cddCAS |
[3] For a review on the development of synthetic methods using metal catalysed decarboxylation of propiolic acids, see: K. Park, S. Lee, RSC Advances 2013, 3, 14165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wit7vL&md5=114a9e097540e0f3f946eaec5a93fef6CAS |
[4] F. Manjolinho, M. Arndt, K. Gooßen, L. J. Gooßen, ACS Catal. 2012, 2, 2014.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOru7zN&md5=0234c6a941c47cda4a157f9609ac5e1cCAS |
[5] J. Jover, F. Maseras, J. Org. Chem. 2014, 79, 11981.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFyrs7rE&md5=3ee4ba024c2b78dabc4b25bfce83b4fdCAS | 25243332PubMed |
[6] (a) C. Feng, T.-P. Loh, Chem. Commun. 2010, 46, 4779.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnslSnt7w%3D&md5=d71aa136d54819895b899b0ddbbc3de3CAS |
(b) J. Hu, N. Zhao, B. Yang, G. Wang, L.-N. Guo, Y.-M. Liang, S.-D. Yang, Chem. – Eur. J. 2011, 17, 5516.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Kim, D. Kang, E. J. Yoo, P. H. Lee, Eur. J. Org. Chem. 2013, 2013, 7902.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. D. Kim, T. Palani, M. R. Kumar, S. Lee, H. C. Choi, J. Mater. Chem. 2012, 22, 20665.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) R. A. J. O’Hair, Chem. Commun. 2006, 1469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFOlsrk%3D&md5=27335385bc00a440f281b671dc89ae89CAS |
(b) R. A. J. O’Hair, in Reactive Intermediates: MS Investigations in Solution (Ed. L. S. Santos) 2010, Ch. 6, pp. 199–227 (Wiley-VCH: Weinheim).
(c) R. A. J. O’Hair, N. J. Rijs, Acc. Chem. Res. 2015, 48, 329.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) R. A. J. O’Hair, Chem. Commun. 2002, 20.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFemsw%3D%3D&md5=bf7943e9c2d047f2015ef0749ad32002CAS |
(b) P. F. James, R. A. J. O’Hair, Org. Lett. 2004, 6, 2761.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. J. O’Hair, A. K. Vrkic, P. F. James, J. Am. Chem. Soc. 2004, 126, 12173.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. J. Rijs, G. N. Khairallah, T. Waters, R. A. J. O’Hair, J. Am. Chem. Soc. 2008, 130, 1069.
| Crossref | GoogleScholarGoogle Scholar |
(e) N. J. Rijs, R. A. J. O’Hair, Organometallics 2009, 28, 2684.
| Crossref | GoogleScholarGoogle Scholar |
(f) G. N. Khairallah, C. Thum, R. A. J. O’Hair, Organometallics 2009, 28, 5002.
| Crossref | GoogleScholarGoogle Scholar |
(g) N. J. Rijs, R. A. J. O’Hair, Organometallics 2010, 29, 2282.
| Crossref | GoogleScholarGoogle Scholar |
(h) N. J. Rijs, G. B. Sanvido, G. N. Khairallah, R. A. J. O’Hair, Dalton Trans. 2010, 39, 8655.
| Crossref | GoogleScholarGoogle Scholar |
(i) N. J. Rijs, N. Yoshikai, E. Nakamura, R. A. J. O’Hair, J. Am. Chem. Soc. 2012, 134, 2569.
| Crossref | GoogleScholarGoogle Scholar |
(j) L. O. Sraj, G. N. Khairallah, G. da Silva, R. A. J. O’Hair, Organometallics 2012, 31, 1801.
| Crossref | GoogleScholarGoogle Scholar |
(k) N. J. Rijs, R. A. J. O’Hair, Organometallics 2012, 31, 8012.
| Crossref | GoogleScholarGoogle Scholar |
(l) K. L. Vikse, G. N. Khairallah, J. S. McIndoe, R. A. J. O’Hair, Dalton Trans. 2013, 42, 6440.
| Crossref | GoogleScholarGoogle Scholar |
(m) N. J. Rijs, N. Yoshikai, E. Nakamura, R. A. J. O’Hair, J. Org. Chem. 2014, 79, 1320.
| Crossref | GoogleScholarGoogle Scholar |
(n) J. Li, G. N. Khairallah, R. A. J. O’Hair, Organometallics 2015, 34, 488.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) G. N. Khairallah, T. Waters, R. A. J. O’Hair, Dalton Trans. 2009, 2832.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslKjtbY%3D&md5=f5813c0cbd0ba35b0681e36cca4142f2CAS | 19333507PubMed |
(b) G. N. Khairallah, J. H. Yoo, R. A. J. O’Hair, Organometallics 2010, 29, 1238.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. G. Leeming, G. N. Khairallah, G. da Silva, R. A. J. O’Hair, Organometallics 2011, 30, 4297.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. Brunet, R. Antoine, M. Broyer, P. Dugourd, A. Kulesza, J. Petersen, M. I. S. Röhr, R. Mitrić, V. Bonačić-Koutecký, R. A. J. O’Hair, J. Phys. Chem. A 2011, 115, 9120.
| Crossref | GoogleScholarGoogle Scholar |
(e) M. J. Woolley, G. N. Khairallah, P. S. Donnelly, B. F. Yates, R. A. J. O’Hair, Organometallics 2013, 32, 6931.
| Crossref | GoogleScholarGoogle Scholar |
(f) H. Al Sharif, K. L. Vikse, G. N. Khairallah, R. A. J. O’Hair, Organometallics 2013, 32, 5416.
| Crossref | GoogleScholarGoogle Scholar |
(g) M. J. Woolley, G. N. Khairallah, G. R. da Silva, P. S. Donnelly, R. A. J. O’Hair, Organometallics 2014, 33, 5185.
| Crossref | GoogleScholarGoogle Scholar |
(h) M. J. Woolley, A. Ariafard, G. N. Khairallah, K. H.-Y. Kwan, P. S. Donnelly, J. M. White, A. J. Canty, B. F. Yates, R. A. J. O’Hair, J. Org. Chem. 2014, 79, 12056.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) G. N. Khairallah, C. C. L. Thum, D. Lesage, J.-C. Tabet, R. A. J. O’Hair, Organometallics 2013, 32, 2319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1ektro%3D&md5=398d391a875cc45955188ae821241e9dCAS |
(b) M. Leeming, G. N. Khairallah, S. Osburn, K. L. Vikse, R. A. J. O’Hair, Aust. J. Chem. 2014, 67, 701.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. N. Khairallah, G. da Silva, R. A. J. O’Hair, Angew. Chem. Int. Ed. 2014, 53, 10979.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) G. N. Khairallah, C. M. Williams, S. Chow, R. A. J. O’Hair, Dalton Trans. 2013, 42, 9462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFCiu7Y%3D&md5=855720f0c083a614c3194f246cddecfbCAS | 23187760PubMed |
(b) G. N. Khairallah, K. A. Saleeba, S. Chow, W. Eger, C. M. Williams, R. A. J. O’Hair, Int. J. Mass Spectrom. 2013, 354–355, 229.
| Crossref | GoogleScholarGoogle Scholar |
[12] G. N. Khairallah, T. Waters, R. A. J. O’Hair, Eur. J. Mass Spectrom. 2007, 13, 367.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlygtrw%3D&md5=da35f11787615d66424eec2948942271CAS |
[13] (a) W. Linert, M. Holzweber, R. Schmid, in Handbook of Solvents, 2nd edn (Ed. G. Wypych) 2014, Vol. 1, Ch. 12.1, pp. 753–810 (ChemTec: Toronto).
(b) F. Schoenebeck, in Understanding Organometallic Reaction Mechanisms and Catalysis (Ed. V. P. Ananikov) 2014, Ch. 4, pp. 69–92 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).
(c) J. Burgess, E. Pelizzetti, Prog. React. Kinet. 1992, 17, 1.
(d) E. Lyngvi, F. Schoenebeck, Tetrahedron 2013, 69, 5715.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. E. M. Allen, R. M. Lough, J. Organomet. Chem. 1973, 61, 7.
| Crossref | GoogleScholarGoogle Scholar |
[14] L. Feketeová, G. N. Khairallah, R. A. J. O’Hair, Eur. J. Mass Spectrom. 2008, 14, 107.
| Crossref | GoogleScholarGoogle Scholar |
[15] M. J. Frisch, et al., Gaussian 09, A.02 2009 (Gaussian, Inc.: Wallingford, CT). See Supplementary Material for full citation.
[16] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=8d19467ad8c1702f0ea99c588855f696CAS |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |
[17] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXht1Khsr8%3D&md5=836f57dab34ad1493c674160b11c694eCAS |
[18] (a) H. El Aribi, C. F. Rodriquez, T. Shoeib, Y. Ling, A. C. Hopkinson, K. W. M. Siu, J. Phys. Chem. A 2002, 106, 8798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1ClurY%3D&md5=8a259679fdc2c720d2663b34d28e6a92CAS |
(b) H. Deng, P. Kebarle, J. Phys. Chem. A 1998, 102, 571.
| Crossref | GoogleScholarGoogle Scholar |