C-Terminal Modifications Broaden Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20
Wenyi Li A B , Julien Tailhades B , M. Akhter Hossain A B , Neil M. O’Brien-Simpson C D , Eric C. Reynolds C D , Laszlo OtvosA School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.
B The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Vic. 3010, Australia.
C Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.
D Oral Health CRC, Melbourne Dental School, University of Melbourne, Melbourne, Vic. 3010, Australia.
E Department of Biology, Temple University, Philadelphia, PA 19122, USA.
F Corresponding authors. Email: fs@unimelb.edu.au; john.wade@florey.edu.au
Australian Journal of Chemistry 68(9) 1373-1378 https://doi.org/10.1071/CH15169
Submitted: 8 April 2015 Accepted: 21 May 2015 Published: 12 June 2015
Abstract
A series of N- and C-terminal modifications of the monomeric proline-rich antimicrobial peptide, Chex1-Arg20, was obtained via different chemical strategies using Fmoc/tBu solid-phase peptide synthesis in order to study their effects on a panel of Gram-negative bacteria. In particular, C-terminal modifications with hydrazide or alcohol functions extended their antibacterial activity from E. coli and K. pneumoniae to other Gram-negative species, A. baumannii and P. aeruginosa. Furthermore, these analogues did not show cytotoxicity towards mammalian cells. Hence, such modifications may aid in the development of more potent proline-rich antimicrobial peptides with a greater spectrum of activity against Gram-negative bacteria than the parent peptide.
References
[1] K. Gammon, Nature 2014, 509, S10.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntFGgtbk%3D&md5=01bb4e1e7f8b815e0c250e4c3876ca3fCAS | 24784422PubMed |
[2] H. Jenssen, P. Hamill, R. E. W. Hancock, Clin. Microbiol. Rev. 2006, 19, 491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVaqsrk%3D&md5=e5c4c36ca1a8c8557203d986209001eeCAS | 16847082PubMed |
[3] (a) L. Otvos, J. Pept. Sci. 2005, 11, 697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehtL%2FM&md5=593783b9d5a7da8f266221b1bc8231c6CAS | 16059966PubMed |
(b) W. Li, J. Tailhades, N. O’Brien-Simpson, F. Separovic, L. Otvos, M. A. Hossain, J. D. Wade, Amino Acids 2014, 46, 2287.
| Crossref | GoogleScholarGoogle Scholar |
[4] A. Krizsan, D. Volke, S. Weinert, N. Strater, D. Knappe, R. Hoffmann, Angew. Chem. Int. Ed. 2014, 53, 12236.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCisrjI&md5=c5556f5deb1b56102c27255ae82468d8CAS |
[5] M. Mardirossian, R. Grzela, C. Giglione, T. Meinnel, R. Gennaro, P. Mergaert, M. Scocchi, Chem. Biol. 2014, 21, 1639.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGisbbI&md5=2102e9048205a8a97fb28e733e54b15fCAS | 25455857PubMed |
[6] M. Cassone, N. Frith, P. Vogiatzi, J. D. Wade, L. Otvos, Int. J. Pept. Res. Ther. 2009, 15, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslart7c%3D&md5=754ebfa1bc7ef5e820dd6da1e44644c2CAS |
[7] L. Otvos, J. D. Wade, F. Lin, B. A. Condie, J. Hanrieder, R. Hoffmann, J. Med. Chem. 2005, 48, 5349.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Wku74%3D&md5=d7ab52c8e5403589100aa55177ed7ebbCAS | 16078852PubMed |
[8] P. B. Noto, G. Abbadessa, M. Cassone, G. D. Mateo, A. Agelan, J. D. Wade, D. Szabo, B. Kocsis, K. Nagy, F. Rozgonyi, L. Otvos, Protein Sci. 2008, 17, 1249.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ehsL8%3D&md5=1190f121e76b7374dc5c4fe50e30a49dCAS | 18413862PubMed |
[9] M. Cassone, P. Vogiatzi, R. La Montagna, V. De Olivier Inacio, P. Cudic, J. D. Wade, L. Otvos Jr, Peptides 2008, 29, 1878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12lt7bL&md5=a4da2cc6f0ffcc861150ff7b5bba7aa5CAS | 18721837PubMed |
[10] M. Cassone, N. Frith, P. Vogiatzi, J. D. Wade, L. Otvos, Int. J. Pept. Res. Ther. 2009, 15, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslart7c%3D&md5=754ebfa1bc7ef5e820dd6da1e44644c2CAS |
[11] F. Guida, M. Benincasa, S. Zahariev, M. Scocchi, F. Berti, R. Gennaro, A. Tossi, J. Med. Chem. 2015, 58, 1195.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOhu7vP&md5=5c2ba1fc717146cd6346f5e49cf2bfc5CAS | 25525837PubMed |
[12] D. Oh, A. Nasrolahi Shirazi, K. Northup, B. Sullivan, R. K. Tiwari, M. Bisoffi, K. Parang, Mol. Pharm. 2014, 11, 2845.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVOjt7vJ&md5=065c3e8bcf97b6dfa567b9db8462cb1dCAS | 24978295PubMed |
[13] P. Czihal, D. Knappe, S. Fritsche, M. Zahn, N. Berthold, S. Piantavigna, U. Müller, S. Van Dorpe, N. Herth, A. Binas, G. Köhler, B. De Spiegeleer, L. L. Martin, O. Nolte, N. Sträter, G. Alber, R. Hoffmann, ACS Chem. Biol. 2012, 7, 1281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFSgsbg%3D&md5=9c75dcc113ab74340f1b3dfa8c7c6068CAS | 22594381PubMed |
[14] A. Aboelmagd, I. A. Ali, E. M. Salem, ARKIVOC 2011, 2011, 337.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Proc. Natl. Acad. Sci. USA 1982, 79, 7951.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXmslertw%3D%3D&md5=bff9e2d6650a75d237a81dc6732661e0CAS | 6961463PubMed |
(b) W. Bauer, U. Briner, W. Doepfner, R. Haller, R. Huguenin, P. Marbach, T. J. Petcher, J. Pless, Life Sci. 1982, 31, 1133.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) J.-S. Zheng, S. Tang, Y.-K. Qi, Z.-P. Wang, L. Liu, Nat. Protoc. 2013, 8, 2483.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Kjsr4%3D&md5=3c3ddb5e433e261063830808cd537ea9CAS | 24232250PubMed |
(b) G.-M. Fang, Y.-M. Li, F. Shen, Y.-C. Huang, J.-B. Li, Y. Lin, H. K. Cui, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 7645.
| Crossref | GoogleScholarGoogle Scholar |
(c) G.-M. Fang, J.-X. Wang, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 10347.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Tailhades, M.-A. Gidel, B. Grossi, J. Lécaillon, L. Brunel, G. Subra, J. Martinez, M. Amblard, Angew. Chem. Int. Ed. 2010, 49, 117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WltL%2FP&md5=9f0eac7618f7687ec18eb787eb46cc81CAS |
[18] D. Amsterdam, in Antibiotics in Laboratory Medicine (Ed. V. Lorian) 1996. pp. 52–111 (Williams & Wilkins: Baltimore, MD).
[19] (a) F. Separovic, J. Gehrmann, T. Milne, B. A. Cornell, S. Y. Lin, R. Smith, Biophys. J. 1994, 67, 1495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVGnsr4%3D&md5=9c4f08742a52991a77adc3d2fc9de609CAS | 7529584PubMed |
(b) R. Nagaraj, P. Balaram, Acc. Chem. Res. 1981, 14, 356.
| Crossref | GoogleScholarGoogle Scholar |
[20] G. B. Fields, R. L. Noble, Int. J. Pept. Protein Res. 1990, 35, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVWhsbg%3D&md5=93bb580dcf07802d1c4026c0a17dfd62CAS | 2191922PubMed |
[21] R. J. W. Lambert, J. Pearson, J. Appl. Microbiol. 2000, 88, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVOhsr8%3D&md5=1fee91cfa9a0cc19cb398700b1f7aa46CAS |