Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Characterisation of Nanostructured Co3O4 Synthesised by the Thermal Decomposition of an Inorganic Precursor

K. Kalpanadevi A , C. R. Sinduja A and R. Manimekalai A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641 029, India.

B Corresponding author. Email: manimekalair@ymail.com

Australian Journal of Chemistry 67(11) 1671-1674 https://doi.org/10.1071/CH13567
Submitted: 24 October 2013  Accepted: 11 March 2014   Published: 1 May 2014

Abstract

Nanocrystalline Co3O4 has been synthesised using an inorganic precursor via thermal decomposition. The prepared inorganic precursor Co(cinnamate)2(N2H4)2 was characterised by hydrazine and metal analyses, infrared spectral analysis, and thermogravimetric analysis. Using appropriate annealing conditions, cobalt oxide nanoparticles of average size ~11 nm were synthesised by thermal treatment of the precursor. The nanoparticles’ size and structure were characterised using X-ray diffraction, high-resolution transmission electron microscopy, selected-area electron diffraction, and scanning electron microscopy techniques.


References

[1]  C. Feldmann, H. O. Jungk, Angew. Chem. Int. Ed. 2001, 40, 359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslahug%3D%3D&md5=8422923bdadaebd466628968e23530b1CAS | 1:CAS:528:DC%2BD3MXoslahug%3D%3D&md5=8422923bdadaebd466628968e23530b1CAS |

[2]  K. Holmberg, Handbook of Applied Surface and Colloid Chemistry 2001, Vols I–II (John Wiley: New York).

[3]  T. Y. Wei, C. H. Chen, K. H. Chang, S. Y. Lu, C. C. Hu, Chem. Mater. 2009, 21, 3228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVKqs7k%3D&md5=57a470550964afae317df821d00fd8d7CAS | 1:CAS:528:DC%2BD1MXnvVKqs7k%3D&md5=57a470550964afae317df821d00fd8d7CAS |

[4]  Y. K. Hsu, Y. C. Chen, Y. G. Lin, L. C. Chen, K. H. Chen, Chem. Commun. 2011, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVygsg%3D%3D&md5=d64c90add40f654771b64916a7298c06CAS | 1:CAS:528:DC%2BC3MXjsVygsg%3D%3D&md5=d64c90add40f654771b64916a7298c06CAS |

[5]  T. Zhu, J. S. Chen, X. W. Lou, J. Mater. Chem. 2010, 20, 7015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFenurk%3D&md5=e10b3647996a982d6cef255cb9c296acCAS |

[6]  M. Zheng, J. Cao, S. Liao, J. Liu, H. Chen, Y. Zhao, W. Dai, G. Ji, J. Cao, J. J. Tao, J. Phys. Chem. C 2009, 113, 3887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWgtL0%3D&md5=94cbb041dff9fdd7c3aca113ec23cd54CAS |

[7]  H. Kim, D. W. Park, H. C. Woo, J. S. Chung, Appl. Catal. B 1998, 19, 233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVyisrw%3D&md5=6973b126807ed25958f01e2558a76f32CAS |

[8]  B. Guo, C. S. Li, Z. Y. Yuan, J. Phys. Chem. C 2010, 114, 12805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1anu7c%3D&md5=9c3b1b2607b244700fe2e2cf4a636556CAS |

[9]  L. W. Lou, D. Deng, J. Y. Lee, J. Feng, A. Archer, Adv. Mater. 2008, 20, 258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlt1Wns7Y%3D&md5=0b4c8fd00815ac5525ad3fa682406c1bCAS | 1:CAS:528:DC%2BD1cXlt1Wns7Y%3D&md5=0b4c8fd00815ac5525ad3fa682406c1bCAS |

[10]  T. Yu, Y. M. Zhu, X. J. Xu, Z. X. Shen, P. Chen, C. T. Lim, J. T. L. Thong, C. H. Sow, Adv. Mater. 2005, 17, 1595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlCjtbk%3D&md5=28a8ebb47e244c53f0b26bd5d041278eCAS | 1:CAS:528:DC%2BD2MXmtlCjtbk%3D&md5=28a8ebb47e244c53f0b26bd5d041278eCAS |

[11]  Y. Ueda, N. Kikuchi, S. Ikeda, T. Houga, J. Magn. Mater. 1999, 198–199, 740.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  P. M. S. Monk, S. Ayub, Solid State Ion. 1997, 99, 115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1WjurY%3D&md5=bba14ee4ae0f03df474d2ba7f6ad94aaCAS | 1:CAS:528:DyaK2sXks1WjurY%3D&md5=bba14ee4ae0f03df474d2ba7f6ad94aaCAS |

[13]  V. R. Shinde, S. B. Mahadik, T. P. Gujar, C. D. Lokhande, Appl. Surf. Sci. 2006, 252, 7487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlWiu7g%3D&md5=5a115e30ee41dd311859582c3b8051fdCAS |

[14]  S. G. Kandalkar, J. L. Gunjakar, C. D. Lokhande, Appl. Surf. Sci. 2008, 254, 5540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlems78%3D&md5=06b59f71c4bd130f70dfb1cb80138b93CAS | 1:CAS:528:DC%2BD1cXmtlems78%3D&md5=06b59f71c4bd130f70dfb1cb80138b93CAS |

[15]  J. Lang, X. Yan, Q. Xue, J. Power Sources 2011, 196, 7841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1ersrs%3D&md5=02cd97aeee08244e08827c50562e008cCAS |

[16]  M. Longhi, L. Formaro, J. Electroanal. Chem. 1999, 464, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFCqtbo%3D&md5=0e108d85d5fd9f06c1266bf640af8c30CAS |

[17]  I. G. Casella, M. R. Guascito, Electrochim. Acta 1999, 45, 1113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslSqtw%3D%3D&md5=9b136f4e3d18b0ee0cb537cbb0468440CAS |

[18]  A. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell, T. D. Tilley, J. Phys. Chem. C 2009, 113, 15068.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKmsr8%3D&md5=a137be31a4790e3e4bdc55c5c158d758CAS | 1:CAS:528:DC%2BD1MXptVKmsr8%3D&md5=a137be31a4790e3e4bdc55c5c158d758CAS |

[19]  M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556.
         | 1:CAS:528:DC%2BC3cXmtF2nsro%3D&md5=dce1702f16eaac063daa85f7016a3dd7CAS |
         | 1:CAS:528:DC%2BC3cXmtF2nsro%3D&md5=dce1702f16eaac063daa85f7016a3dd7CAS |

[20]  X. Liu, G. Qiu, X. Li, Nanotechnology 2005, 16, 3035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVKisQ%3D%3D&md5=3b1c74b48cd3d86402d4a7a0a716ee4bCAS | 1:CAS:528:DC%2BD28XnvVKisQ%3D%3D&md5=3b1c74b48cd3d86402d4a7a0a716ee4bCAS |

[21]  L. M. Da Silva, J. F. C. Boodts, L. A. D. Faria, Electrochim. Acta 2001, 46, 1369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtV2ntbs%3D&md5=c5e40cae8280582347846a1eb48c5562CAS | 1:CAS:528:DC%2BD3MXhtV2ntbs%3D&md5=c5e40cae8280582347846a1eb48c5562CAS |

[22]  A. C. Tavares, M. A. M. Cartaxo, M. I. S. Pereira, F. M. Costa, J. Solid State Electrochem. 2001, 5, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVKktr8%3D&md5=eefff6dbc481bb2273b85e357a48a7e1CAS | 1:CAS:528:DC%2BD3MXhvVKktr8%3D&md5=eefff6dbc481bb2273b85e357a48a7e1CAS |

[23]  E. Laouini, M. Hamdani, M. I. S. Pereira, J. Douch, M. H. Mendoca, Y. Berghoute, R. N. Singh, Int. J. Hydrogen Energy 2008, 33, 4936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOltLnF&md5=70f67f21e8e825dd1344a4daa7758b3aCAS | 1:CAS:528:DC%2BD1cXhtFOltLnF&md5=70f67f21e8e825dd1344a4daa7758b3aCAS |

[24]  C. C. Lin, C. C. Lee, J. Electrochem. Soc. 2010, 157, A230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlyluw%3D%3D&md5=b0e66a74f57a510a06f715b919cb3c5dCAS | 1:CAS:528:DC%2BC3cXitlyluw%3D%3D&md5=b0e66a74f57a510a06f715b919cb3c5dCAS |

[25]  W. Estrada, M. C. A. Fantini, S. S. Castro, C. N. P. Fonseca, A. Gorenstein, J. Appl. Phys. 1993, 74, 5835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhs1artw%3D%3D&md5=23694f5610d9901a87769f0a750f17d5CAS | 1:CAS:528:DyaK2cXhs1artw%3D%3D&md5=23694f5610d9901a87769f0a750f17d5CAS |

[26]  G. Spinolo, S. Ardizzone, S. Trasatti, J. Electroanal. Chem. 1997, 423, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2ltLc%3D&md5=525f4a375ac8f6480da8794fa9a28b46CAS | 1:CAS:528:DyaK2sXivV2ltLc%3D&md5=525f4a375ac8f6480da8794fa9a28b46CAS |

[27]  F. Švegl, B. Orel, I. Grabec-Švegl, V. Kaučič, Electrochim. Acta 2000, 45, 4359.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  S. Cattarin, P. Guerriero, M. Musiani, Electrochim. Acta 2001, 46, 4229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslSgu78%3D&md5=ab7ca9dbc3a48a452cdc9ba9242a6b7dCAS | 1:CAS:528:DC%2BD3MXnslSgu78%3D&md5=ab7ca9dbc3a48a452cdc9ba9242a6b7dCAS |

[29]  K. Nakaoka, M. Nakayama, K. Ogura, J. Electrochem. Soc. 2002, 149, C159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWiu7c%3D&md5=d56bedae04894ae076e53f640cf220eaCAS | 1:CAS:528:DC%2BD38XitlWiu7c%3D&md5=d56bedae04894ae076e53f640cf220eaCAS |

[30]  I. Casella, J. Electroanal. Chem. 2002, 520, 119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslynurg%3D&md5=5962b62543452d1f518deb89f223303dCAS | 1:CAS:528:DC%2BD38Xhslynurg%3D&md5=5962b62543452d1f518deb89f223303dCAS |

[31]  N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D. A. Tryk, S. M. Park, A. Fujishima, J. Electrochem. Soc. 2003, 150, E337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFymsrg%3D&md5=0b556a48a301a4ddd3f7d8a0822eff31CAS | 1:CAS:528:DC%2BD3sXksFymsrg%3D&md5=0b556a48a301a4ddd3f7d8a0822eff31CAS |

[32]  G. Wu, N. Li, D. R. Zhou, K. Mitsuo, B. Q. Xu, J. Solid State Chem. 2004, 177, 3682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVOqurc%3D&md5=78f8d7929cb48740a4bc0fb5ba4fb926CAS | 1:CAS:528:DC%2BD2cXovVOqurc%3D&md5=78f8d7929cb48740a4bc0fb5ba4fb926CAS |

[33]  I. Vogel, A Textbook of Quantitative Inorganic Analysis, 4th edn 1985 (Longman: London, UK).

[34]  A. Braibanti, F. Dallavalle, M. A. Pellinghelli, E. Leporati, Inorg. Chem. 1968, 7, 1430.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXktl2qtrY%3D&md5=ae55a9d2cd1dfa13a4e109e13f5a3b6dCAS | 1:CAS:528:DyaF1cXktl2qtrY%3D&md5=ae55a9d2cd1dfa13a4e109e13f5a3b6dCAS |

[35]  O. Knop, K. I. G. Reid, Sutarno, Y. Nakagawa, Can. J. Chem. 1968, 46, 3463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhsFSrtA%3D%3D&md5=8590d3924d8f91f25695bf5f915a3ebcCAS | 1:CAS:528:DyaF1MXhsFSrtA%3D%3D&md5=8590d3924d8f91f25695bf5f915a3ebcCAS |