Organic Molecular Crystals: From Non-Porous Structure to Potential Porous Structure Controlled by Reaction Temperature
Xiao-Liu Wu A , Ming-Biao Luo A , Jian-Qiang Li A , Yan Zhu A and Feng Luo A BA College of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou, 344000 Jiangxi, China.
B Corresponding author. Email: ecitluofeng@163.com
Australian Journal of Chemistry 67(11) 1675-1678 https://doi.org/10.1071/CH13732
Submitted: 4 January 2014 Accepted: 13 March 2014 Published: 2 April 2014
Abstract
Reported here are two novel organic crystals, L 1 and L·(DMF)1.5 2 (DMF = (CH3)2NCHO), showing non-porous and microporous structure, where the formations can be precisely controlled by varying the reaction temperature. The reason for this exciting discovery could be directly related to the various degrees of distortion in the organic molecules as observed in 1 and 2, where detailed structural studies were carried out.
References
[1] (a) A. I. Cooper, Angew. Chem. Int. Ed. 2012, 51, 7892.| Crossref | GoogleScholarGoogle Scholar |
(b) J. I. Holst, A. I. Cooper, Adv. Mater. 2010, 22, 5212.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. J. Msayib, D. Book, P. M. Budd, N. Chaukura, K. D. M. Harris, M. Helliwell, S. Tedds, A. Walton, J. E. Warren, M. Xu, N. B. McKeown, Angew. Chem. Int. Ed. 2009, 48, 3273.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) M. Mastalerz, I. M. Oppel, Angew. Chem. Int. Ed. 2012, 51, 5252.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. B. Dewal, M. W. Lufaso, A. D. Hughes, S. A. Samuel, P. Pellechia, L. S. Shimizu, Chem. Mater. 2006, 18, 4855.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) R. Anedda, D. V. Soldatov, I. L. Moudrakovski, M. Casu, J. A. Ripmeester, Chem. Mater. 2009, 20, 9.
(b) J. Tian, P. K. Thallapally, B. P. McGrail, CrystEngComm 2012, 14, 1909.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) N. B. McKeown, J. Mater. Chem. 2010, 20, 10588.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Maspoch, N. Domingo, R.-Z. Daniel, K. Wurst, J. Tejada, J. Rovira, J. Veciana, J. Am. Chem. Soc. 2004, 126, 730.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. K. Thallapally, S. J. Dalgarno, J. L. Atwood, J. Am. Chem. Soc. 2006, 128, 15060.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) T. Hasell, M. Schmidtmann, A. I. Cooper, J. Am. Chem. Soc. 2011, 133, 14920.
| Crossref | GoogleScholarGoogle Scholar | 21863835PubMed |
(b) T. M. Long, T. M. Swager, J. Am. Chem. Soc. 2003, 125, 14113.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. B. Yang, A. Greenaway, X. Lin, R. Matsuda, A. J. Blake, C. Wilson, W. Lewis, P. Hubberstey, S. Kitagawa, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2010, 132, 14457.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) S. G. Rudisill, Z. Y. Wang, A. Stein, Langmuir 2012, 28, 7310.
| Crossref | GoogleScholarGoogle Scholar | 22409622PubMed |
(b) J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. G. Bezzu, Science 2010, 327, 1627.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. R. Trivedi, Y. Fujiki, N. Fujita, S. Shinkai, K. Sada, Chem. Asian J. 2009, 4, 254.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) J. Mizuguchi, T. Makino, Y. Imura, H. Takahashi, S. Suzuki, Acta Crystallogr. 2005, 61, 3044.
(b) P. Mahata, M. Prabu, S. Natarajan, Inorg. Chem. 2008, 47, 8451.
| Crossref | GoogleScholarGoogle Scholar |
(c) U. Garcia-Couceiro, O. Castillo, J. Cepeda, M. Lanchas, A. Luque, P. Y. Sonia, P. Román, P. Y. Daniel, Inorg. Chem. 2010, 49, 11346.
| Crossref | GoogleScholarGoogle Scholar |
(d) J.-G. Hu, L. Qin, M.-D. Zhang, X.-Q. Yao, Y.-Z. Li, Z.-J. Guo, H.-G. Zheng, Z.-L. Xue, Chem. Commun. 2012, 48, 681.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J.-S. Qin, D.-Y. Du, S.-L. Li, Y.-Q. Lan, K.-Z. Shao, Z.-M. Su, CrystEngComm 2011, 13, 779.
| Crossref | GoogleScholarGoogle Scholar |
(b) Z.-P. Deng, H.-L. Qi, L.-H. Huo, H. Zhao, S. Gao, CrystEngComm 2011, 13, 6632.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) F. Luo, J. M. Zheng, S. R. Batten, Chem. Comm. 2007, 3744.
| Crossref | GoogleScholarGoogle Scholar | 17851614PubMed |
(b) F. Luo, Y. X. Che, J. M. Zheng, Microporous Mesoporous Mater. 2009, 117, 486.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Luo, Y. X. Che, J. M. Zheng, CrystEngComm 2009, 11, 1097.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) F. Luo, M. S. Wang, M. B. Luo, G. M. Sun, Y. M. Song, P. X. Li, G. C. Guo, Chem. Commun. 2012, 48, 5989.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Luo, Z. Z. Yuan, X. F. Feng, S. R. Batten, J. Q. Li, M. B. Luo, S. J. Liu, W. Y. Xu, G. M. Sun, Y. M. Song, H. X. Huang, X. Z. Tian, Cryst. Growth Des. 2012, 12, 3392.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. M. Sun, Y. M. Song, Y. Liu, X. Z. Tian, H. X. Huang, Y. Zhu, Z. J. Yuan, X. F. Feng, M. B. Luo, S. J. Liu, W. Y. Xu, F. Luo, CrystEngComm 2012, 14, 5714.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. M. Sun, H. X. Huang, X. Z. Tian, Y. M. Song, Y. Zhu, Z. J. Yuan, W. Y. Xu, M. B. Luo, S. J. Liu, X. F. Feng, F. Luo, CrystEngComm 2012, 14, 6182.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) F. Luo, Y. X. Che, J. M. Zheng, CrystEngComm 2009, 11, 1097.
| Crossref | GoogleScholarGoogle Scholar |
(b) S. Y. Yang, L. S. Long, Y. B. Jiang, R. B. Huang, L. S. Zheng, Chem. Mater. 2002, 14, 3229.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) N. L. S. Yue, D. J. Eisler, M. C. Jennings, R. J. Puddephatt, Inorg. Chem. 2004, 43, 7671.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. K. Kumar, A. Das, P. Dastidar, CrystEngComm 2007, 9, 895.
| Crossref | GoogleScholarGoogle Scholar |
(c) Z.-H. Zhang, S.-C. Chen, J.-L. Mi, M.-Y. He, Q. Chen, M. Du, Chem. Commun. 2010, 46, 8427.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Gong, Y.-C. Zhou, T.-F. Liu, J. Lu, D. M. Proserpio, R. Cao, Chem. Commun. 2011, 47, 5982.
| Crossref | GoogleScholarGoogle Scholar |
[13] A. L. Spek, PLATON: A Multipurpose Crystallographic Tool 2001 (Utrecht University: Utrecht, The Netherlands).