Design of Ionic Liquid-Derived Polyelectrolyte Gels Toward Reversible Water Absorption/Desorption System Driven by Small Temperature Change
Yuki Deguchi A B , Yuki Kohno A B and Hiroyuki Ohno A B CA Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
B Functional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
C Corresponding author. Email: ohnoh@cc.tuat.ac.jp
Australian Journal of Chemistry 67(11) 1666-1670 https://doi.org/10.1071/CH14038
Submitted: 27 January 2014 Accepted: 4 March 2014 Published: 24 March 2014
Abstract
Suitably designed polyelectrolytes derived from tributyl-n-alkylphosphonium 3-sulfopropylmethacrylate-type ionic liquid (IL) monomers undergo a lower critical solution temperature (LCST)-type phase transition, and their transition temperature is a function of the alkyl chain length on the phosphonium cations. Based on this finding, we have successfully prepared chemically cross-linked polyelectrolyte gels, poly(IL) gels, to show the LCST-type phase change. The hydrated state of the prepared poly(IL) gels varied widely with temperature. They desorbed water by elevating the temperature only by a few degrees. Their transition temperature was finely controlled by mixing the composition of IL monomers with different alkyl chain lengths.
References
[1] M. Heskins, J. E. Guillet, J. Macromol. Sci. Chem. 1968, 1441.| Crossref | GoogleScholarGoogle Scholar |
[2] F. Eeckman, A. J. Moës, K. Amigh, Int. J. Pharm. 2004, 273, 109.
| Crossref | GoogleScholarGoogle Scholar | 15010135PubMed |
[3] Z. Tang, Y. Akiyama, T. Okano, Polymers 2012, 4, 1478.
| Crossref | GoogleScholarGoogle Scholar |
[4] M. E. Harmon, M. Tang, C. W. Frank, Polymer 2003, 44, 4547.
| Crossref | GoogleScholarGoogle Scholar |
[5] L. C. Dong, A. S. Hoffman, J. Control. Release 1986, 4, 223.
| Crossref | GoogleScholarGoogle Scholar |
[6] H. Kanazawa, Anal. Bioanal. Chem. 2004, 378, 46.
| Crossref | GoogleScholarGoogle Scholar | 14618294PubMed |
[7] J.-F. Lutz, Ö. Akdemir, A. Hoth, J. Am. Chem. Soc. 2006, 128, 13046.
| Crossref | GoogleScholarGoogle Scholar | 17017772PubMed |
[8] L. Ayres, M. R. J. Vos, P. J. H. M. Adams, I. O. Shklyarevskiy, J. C. M. van Hest, Macromolecules 2003, 36, 5967.
| Crossref | GoogleScholarGoogle Scholar |
[9] R. Hoogenboom, H. M. L. Thijs, M. J. H. C. Jochems, B. M. van Lankvelt, M. W. M. Fijten, U. S. Schubert, Chem. Commun. 2008, 5758.
| Crossref | GoogleScholarGoogle Scholar |
[10] J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992, 965.
| Crossref | GoogleScholarGoogle Scholar |
[11] T. Welton, Chem. Rev. 1999, 99, 2071.
| Crossref | GoogleScholarGoogle Scholar | 11849019PubMed |
[12] N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
| Crossref | GoogleScholarGoogle Scholar | 18197338PubMed |
[13] M. Freemantle, Chem. Eng. News 1998, 76, 32.
| Crossref | GoogleScholarGoogle Scholar |
[14] Y. Kohno, H. Arai, S. Saita, H. Ohno, Aust. J. Chem. 2011, 64, 1560.
| Crossref | GoogleScholarGoogle Scholar |
[15] Y. Kohno, H. Ohno, Phys. Chem. Chem. Phys. 2012, 14, 5063.
| Crossref | GoogleScholarGoogle Scholar | 22334119PubMed |
[16] Y. Kohno, H. Ohno, Chem. Commun. 2012, 48, 7119.
| Crossref | GoogleScholarGoogle Scholar |
[17] H. Ohno, K. Ito, Chem. Lett. 1998, 27, 751.
| Crossref | GoogleScholarGoogle Scholar |
[18] Y. Kohno, H. Ohno, Aust. J. Chem. 2012, 65, 91.
| Crossref | GoogleScholarGoogle Scholar |
[19] Y. Kohno, Y. Deguchi, H. Ohno, Chem. Commun. 2012, 48, 11882.
[20] Y. Kohno, Y. Deguchi, N. Inoue, H. Ohno, Aust. J. Chem. 2013, 66, 1393.
| Crossref | GoogleScholarGoogle Scholar |
[21] S. Sugihara, K. Hashimoto, S. Okabe, M. Shibayama, S. Kanaoka, S. Aoshima, Macromolecules 2004, 37, 336.
| Crossref | GoogleScholarGoogle Scholar |
[22] C. T. Huynh, M. K. Nguyen, D. S. Lee, Macromolecules 2011, 44, 6629.
| Crossref | GoogleScholarGoogle Scholar |
[23] A. Blanazs, R. Verber, O. O. Mykhaylyk, A. J. Ryan, J. Z. Heath, C. W. I. Douglas, S. P. Armes, J. Am. Chem. Soc. 2012, 134, 9741.
| Crossref | GoogleScholarGoogle Scholar | 22582795PubMed |
[24] Z. L. Chu, Y. J. Zeng, Chem. Commun. 2011, 47, 7191.
| Crossref | GoogleScholarGoogle Scholar |
[25] J. C. Ribot, C. Guerrero-Sanchez, R. Hoogenboom, U. S. Schubert, J. Mater. Chem. 2010, 20, 8279.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. C. Ribot, C. Guerrero-Sanchez, T. L. Greaves, D. F. Kennedy, R. Hoogenboom, U. S. Schubert, Soft Matter 2012, 8, 1025.
| Crossref | GoogleScholarGoogle Scholar |
[27] Y. Men, X.-H. Li, M. Antonietti, J. Yuan, Polym. Chem. 2012, 3, 871.
| Crossref | GoogleScholarGoogle Scholar |
[28] Y. Men, H. Schlaad, J. Yuan, ACS Macro Lett. 2013, 2, 456.
| Crossref | GoogleScholarGoogle Scholar |
[29] J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009.
| Crossref | GoogleScholarGoogle Scholar |
[30] Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Bioconjug. Chem. 1993, 4, 341.
| Crossref | GoogleScholarGoogle Scholar | 8274517PubMed |
[31] T. Nishio, R. Suzuki, Y. Tsukada, H. Kanazawa, T. Okano, T. Miyabe-Nishiwaki, J. Chromatogr. A 2009, 1216, 7427.
| Crossref | GoogleScholarGoogle Scholar | 19446823PubMed |
[32] S. Aoshima, S. Sugihara, M. Shibayama, S. Kanaoka, Macromol. Symp. 2004, 215, 151.
| Crossref | GoogleScholarGoogle Scholar |