Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Design of Ionic Liquid-Derived Polyelectrolyte Gels Toward Reversible Water Absorption/Desorption System Driven by Small Temperature Change

Yuki Deguchi A B , Yuki Kohno A B and Hiroyuki Ohno A B C
+ Author Affiliations
- Author Affiliations

A Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

B Functional Ionic Liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.

C Corresponding author. Email: ohnoh@cc.tuat.ac.jp

Australian Journal of Chemistry 67(11) 1666-1670 https://doi.org/10.1071/CH14038
Submitted: 27 January 2014  Accepted: 4 March 2014   Published: 24 March 2014

Abstract

Suitably designed polyelectrolytes derived from tributyl-n-alkylphosphonium 3-sulfopropylmethacrylate-type ionic liquid (IL) monomers undergo a lower critical solution temperature (LCST)-type phase transition, and their transition temperature is a function of the alkyl chain length on the phosphonium cations. Based on this finding, we have successfully prepared chemically cross-linked polyelectrolyte gels, poly(IL) gels, to show the LCST-type phase change. The hydrated state of the prepared poly(IL) gels varied widely with temperature. They desorbed water by elevating the temperature only by a few degrees. Their transition temperature was finely controlled by mixing the composition of IL monomers with different alkyl chain lengths.


References

[1]  M. Heskins, J. E. Guillet, J. Macromol. Sci. Chem. 1968, 1441.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  F. Eeckman, A. J. Moës, K. Amigh, Int. J. Pharm. 2004, 273, 109.
         | Crossref | GoogleScholarGoogle Scholar | 15010135PubMed |

[3]  Z. Tang, Y. Akiyama, T. Okano, Polymers 2012, 4, 1478.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  M. E. Harmon, M. Tang, C. W. Frank, Polymer 2003, 44, 4547.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  L. C. Dong, A. S. Hoffman, J. Control. Release 1986, 4, 223.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  H. Kanazawa, Anal. Bioanal. Chem. 2004, 378, 46.
         | Crossref | GoogleScholarGoogle Scholar | 14618294PubMed |

[7]  J.-F. Lutz, Ö. Akdemir, A. Hoth, J. Am. Chem. Soc. 2006, 128, 13046.
         | Crossref | GoogleScholarGoogle Scholar | 17017772PubMed |

[8]  L. Ayres, M. R. J. Vos, P. J. H. M. Adams, I. O. Shklyarevskiy, J. C. M. van Hest, Macromolecules 2003, 36, 5967.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. Hoogenboom, H. M. L. Thijs, M. J. H. C. Jochems, B. M. van Lankvelt, M. W. M. Fijten, U. S. Schubert, Chem. Commun. 2008, 5758.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar | 11849019PubMed |

[12]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar | 18197338PubMed |

[13]  M. Freemantle, Chem. Eng. News 1998, 76, 32.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. Kohno, H. Arai, S. Saita, H. Ohno, Aust. J. Chem. 2011, 64, 1560.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  Y. Kohno, H. Ohno, Phys. Chem. Chem. Phys. 2012, 14, 5063.
         | Crossref | GoogleScholarGoogle Scholar | 22334119PubMed |

[16]  Y. Kohno, H. Ohno, Chem. Commun. 2012, 48, 7119.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. Ohno, K. Ito, Chem. Lett. 1998, 27, 751.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  Y. Kohno, H. Ohno, Aust. J. Chem. 2012, 65, 91.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Y. Kohno, Y. Deguchi, H. Ohno, Chem. Commun. 2012, 48, 11882.

[20]  Y. Kohno, Y. Deguchi, N. Inoue, H. Ohno, Aust. J. Chem. 2013, 66, 1393.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Sugihara, K. Hashimoto, S. Okabe, M. Shibayama, S. Kanaoka, S. Aoshima, Macromolecules 2004, 37, 336.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  C. T. Huynh, M. K. Nguyen, D. S. Lee, Macromolecules 2011, 44, 6629.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  A. Blanazs, R. Verber, O. O. Mykhaylyk, A. J. Ryan, J. Z. Heath, C. W. I. Douglas, S. P. Armes, J. Am. Chem. Soc. 2012, 134, 9741.
         | Crossref | GoogleScholarGoogle Scholar | 22582795PubMed |

[24]  Z. L. Chu, Y. J. Zeng, Chem. Commun. 2011, 47, 7191.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  J. C. Ribot, C. Guerrero-Sanchez, R. Hoogenboom, U. S. Schubert, J. Mater. Chem. 2010, 20, 8279.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  J. C. Ribot, C. Guerrero-Sanchez, T. L. Greaves, D. F. Kennedy, R. Hoogenboom, U. S. Schubert, Soft Matter 2012, 8, 1025.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  Y. Men, X.-H. Li, M. Antonietti, J. Yuan, Polym. Chem. 2012, 3, 871.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  Y. Men, H. Schlaad, J. Yuan, ACS Macro Lett. 2013, 2, 456.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  J. Yuan, D. Mecerreyes, M. Antonietti, Prog. Polym. Sci. 2013, 38, 1009.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  Y. G. Takei, T. Aoki, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Bioconjug. Chem. 1993, 4, 341.
         | Crossref | GoogleScholarGoogle Scholar | 8274517PubMed |

[31]  T. Nishio, R. Suzuki, Y. Tsukada, H. Kanazawa, T. Okano, T. Miyabe-Nishiwaki, J. Chromatogr. A 2009, 1216, 7427.
         | Crossref | GoogleScholarGoogle Scholar | 19446823PubMed |

[32]  S. Aoshima, S. Sugihara, M. Shibayama, S. Kanaoka, Macromol. Symp. 2004, 215, 151.
         | Crossref | GoogleScholarGoogle Scholar |