Structural and In Vitro Biological Studies of Organotin(iv) Precursors; Selective Inhibitory Activity Against Human Breast Cancer Cells, Positive to Estrogen Receptors
Vasilis I. Balas A , Christina N. Banti A B , Nikolaos Kourkoumelis C , Sotiris K. Hadjikakou A H , George D. Geromichalos D , Despina Sahpazidou D , Louise Male E , Mike B. Hursthouse E , Barbara Bednarz A F , Maciej Kubicki F , Konstantinos Charalabopoulos B G and Nick Hadjiliadis A HA Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
B Department of Experimental Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece.
C Medical Physics Laboratory, Medical School, University of Ioannina, 45110 Ioannina, Greece.
D Cell Culture, Molecular Modeling and Drug Design Laboratory, Symeonidion Research Center, Theagenion Cancer Hospital, 54007 Thessaloniki, Greece.
E Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
F Department of Chemistry, Adam Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznan, Poland.
G Department of Physiology, Democritus University Medical School, 68100 Alexandroupolis, Greece.
H Corresponding authors. Email: shadjika@uoi.gr, nhadjis@uoi.gr
Australian Journal of Chemistry 65(12) 1625-1637 https://doi.org/10.1071/CH12448
Submitted: 28 September 2012 Accepted: 24 October 2012 Published: 26 November 2012
Abstract
Crystals of Ph3SnCl (1) were grown from a methanol/acetonitrile solution. Compounds [Ph3SnOH]n (2) and [(Ph2Sn)4Cl2O2(OH)2] (3) were crystallized from diethyl ether/methanol/acetonitrile and hot acetone/water solutions respectively, of the white precipitation, formed by adding KOH to solutions of 1 and [Ph2SnCl2] in 1 : 1 and 1 : 2 molar ratios respectively. Complex 1 was characterized by X-ray crystallography. X-ray structure determination of compounds 2 and 3 confirmed the previously reported identities. The molecular structure of 1, reported here, is a new polymorphic form of the known one for Ph3SnCl. Four independent [Ph3SnCl] molecules constitute the crystal structure of 1. The moieties are packed in two pairs in a tail-to-tail arrangement.
Complexes 1–3 were evaluated for their in vitro cytotoxic activity (cell viability) against human cancer cell lines: HeLa (human cervical), MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, ER negative), A549 (lung), Caki-1 (kidney carcinoma), 786-O (renal adenocarcinoma), K1 (thyroid carcinoma), and the normal human lung cell line MRC-5 (normal human fetal lung fibroblast cells) versus, the normal immortalized human mammary gland epithelial cell line MTSV17 with a sulforhodamine B (SRB) assay. The results show potent cytotoxic activity of the complexes against all cell lines used, which was superior to that of cisplatin (CDDP). Compounds 1–3 showed higher activity against breast cancer cells MCF-7 (ER positive) than against of MDA-MB-231 (ER negative). These findings prompted us to search for possible interaction of these complexes with other cellular elements of fundamental importance in cell proliferation. The influence of these complexes 1–3 upon the catalytic peroxidation of linoleic acid to hydroperoxylinoleic acid by the enzyme lipoxygenase (LOX), as well as their binding affinity towards calf thymus-DNA, were kinetically and theoretically studied.
References
[1] (a) B. A. Buck-Koehntop, F. Porcelli, J. L. Lewin, C. J. Cramer, G. Veglia, J. Organomet. Chem. 2006, 691, 1748.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCns74%3D&md5=50f8ed669fa57b716f865ef72248a383CAS |
(b) K. E. Appel, Drug Metab. Rev. 2004, 36, 763.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) “R.E.D. Facts: Triphenyltin Hydroxide”, EPA-738-F-99–014, November 1999 (US EPA).
(b) A. G. Davies, Organotin Chemistry 2004 (Wiley-VCH: Weinheim).
[3] M. Gajda, A. Jancso, “Organotins, formation, use, speciation and toxicology”, Metal Ions in Life Sciences 2010, Ch 7 (RSC Publishing: Cambridge).
[4] (a) M. S. Rose, Biochem. J. 1969, 111, 129.
| 1:CAS:528:DyaF1MXlsVShtg%3D%3D&md5=c028ba3ae2293f158acbd2d6fc7f3dc8CAS |
(b) B. M. Elliott, W. N. Aldridge, Biochem. J. 1977, 163, 583.
(c) K. R. Siebenlist, F. Taketa, Biochem. J. 1986, 233, 471.
(d) G. Zolese, R. Gabbianelli, G. C. Caulini, E. Bertoli, G. Falcioni, Proteins 1999, 34, 443.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) W. N. Aldridge, B. W. Street, Biochem. J. 1970, 118, 171.
| 1:CAS:528:DyaE3cXks1Cmurs%3D&md5=eb36e8018ee2f66444cd196ba47b3e1fCAS |
(b) K. Cain, D. E. Griffiths, Biochem. J. 1977, 162, 575.
(c) A. P. Dawson, M. J. Selwyn, Biochem. J. 1974, 138, 349.
(d) A. P. Dawson, B. G. Farrow, M. J. Selwyn, Biochem. J. 1982, 202, 163.
(e) M. S. Rose, E. A. Lock, Biochem. J. 1970, 120, 151.
[6] D. K. Apps, C. W. Lorna, Biochem. Biophys. Res. Commun. 1996, 227, 839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtlKnsb4%3D&md5=914f60b9f9ce6e441624e479d229bfc7CAS |
[7] (a) J. J. Chicano, J. Ortiz, J. A. Teruel, F. J. Aranda, Biochim. Biophys. Acta 2001, 1510, 330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsFGrsA%3D%3D&md5=003e28723dfc95533dd703abee04f6daCAS |
(b) J. Sarapuk, H. Kleszczynska, S. Przestalski, Appl. Organomet. Chem. 2000, 14, 40.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) Z. Yang, T. Bakas, A. Sanchez-Diaz, K. Charalabopoulos, J. Tsangaris, N. Hadjiliadis, J. Inorg. Biochem. 1998, 72, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12lsbc%3D&md5=b0f82d858f6e26cacf6fd7c1e335b56bCAS |
(b) L. Ghys, M. Biesemans, M. Gielen, A. Garoufis, N. Hadjiliadis, R. Willem, J. C. Martins, Eur. J. Inorg. Chem. 2000, 513.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Nagy, B. Gyurcsik, K. Burger, S. Yamashita, T. Yamaguchi, H. Wakita, M. Nomura, Inorg. Chim. Acta 1995, 230, 105.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Nagy, T. Yamaguchi, K. Yoshida, Struct. Chem. 2003, 14, 77.
| Crossref | GoogleScholarGoogle Scholar |
(e) L. Nagy, A. Szorcsik, J. Inorg. Biochem 2002, 89, 1.
| Crossref | GoogleScholarGoogle Scholar |
(f) L. Nagy, T. Yamaguchi, K. Yoshida, Struct. Chem. 2003, 14, 77.
| Crossref | GoogleScholarGoogle Scholar |
(g) H. Baratne-Jankovics, I. Nagy, L. Pellerito, N. Buzas, R. Barbieri, J. Inorg. Chem. 2002, 92, 55.
(h) A. Jancso, L. Nagy, E. Moldrheim, E. Sletten, J. Chem. Soc., Dalton Trans. 1999, 1587.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) K. Fent, Crit. Rev. Toxicol. 1996, 26, 3.
| Crossref | GoogleScholarGoogle Scholar |
(b) K. R. Siebenlist, F. Taketa, Biochem. J. 1986, 233, 471.
(c) H. Stridh, I. Cotgreave, M. Muller, S. Orrenius, D. Gigliotti, Chem. Res. Toxicol. 2001, 14, 791.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) S. K. Hadjikakou, N. Hadjiliadis, Coord. Chem. Rev. 2009, 253, 235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsL%2FK&md5=0067d3ae6d568b1b9791695a93f56d98CAS |
(b) Tin compounds and their therapeutic potential, Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine (Eds M. Gielen, E. R. T. Tiekink) 2005 (John Wiley & Sons: Chichester).
(c) A. K. Saxena, F. Huber, Coord. Chem. Rev. 1989, 95, 109.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) S. Tabassum, C. Pettinari, J. Organomet. Chem. 2006, 691, 1761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCns7w%3D&md5=0da2e6974d54ccbbe787a66dbb279994CAS |
(b) C. Pellerito, P. D’Agati, T. Fiore, C. Mansueto, V. Mansueto, G. Stocco, L. Nagy, L. Pellerito, J. Inorg. Biochem. 2005, 99, 1294.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Cima, L. Ballarin, Appl. Organomet. Chem. 1999, 13, 697.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, M. Kubicki, S. Karkabounas, K. Charalabopoulos, N. Kourkoumelis, T. Bakas, J. Organomet. Chem. 2006, 691, 1780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCns7s%3D&md5=4c314ffee99d128d7b7c538da76d829cCAS |
(b) M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, M. Schurmann, K. Jurkschat, A. Michaelides, S. Skoulika, T. Bakas, J. Binolis, S. Karkabounas, K. Charalabopoulos, J. Inorg. Biochem. 2003, 96, 425.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, E. R. Milaeva, J. A. Gracheva, V.-Y. Tyurin, N. Kourkoumelis, K. C. Christoforidis, A. K. Metsios, S. Karkabounas, K. Charalabopoulos, Eur. J. Med. Chem. 2008, 43, 327.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, M. Kubicki, S. Skoulika, T. Bakas, M. Baril, I. S. Butler, Inorg. Chem. 2007, 46, 1187.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) V. I. Balas, I. I. Verginadis, G. D. Geromichalos, N. Kourkoumelis, L. Male, M. B. Hursthouse, K. H. Repana, E. Yiannaki, K. Charalabopoulos, T. Bakas, S. K. Hadjikakou, Eur. J. Med. Chem. 2011, 46, 2835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOku7Y%3D&md5=e496eba6217ee7b09aae06c22a7d3a85CAS |
(b) V. I. Balas, S. K. Hadjikakou, N. Hadjiliadis, N. Kourkoumelis, M. E. Light, M. Hursthouse, A. K. Metsios, S. Karkabounas, Bioinorganic Chem. Applic. 2008,
| Crossref | GoogleScholarGoogle Scholar |
(c) D. B. Shpakovsky, C. N. Banti, G. Beaulieu-Houle, N. Kourkoumelis, M. Manoli, M. J. Manos, A. J. Tasiopoulos, S. K. Hadjikakou, E. R. Milaeva, K. Charalabopoulos, T. Bakas, I. S. Butler, N. Hadjiliadis, Dalton Trans. 2012,
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) L. Rocamora-Reverte, E. Carrasco-Garc, J. Ceballos-Torres, S. Prashar, G. N. Kaluderovic, J. A. Ferragut, S. Gomez-Ruiz, ChemMedChem 2012, 7, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SgurvN&md5=13cd858a1973e887a2f45dea4e3909acCAS |
(b) A. Ortiz, J. A. Teruel, F.J. Aranda, Biochimica et Biophysica Acta 2005, 1720, 137.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Pavlakovic, M. D. Kane, C. L. Eyer, A. Kanthasamy, G. E. Isom, J. Neurochem. 1995, 65, 2338.
| Crossref | GoogleScholarGoogle Scholar |
[15] A. Kafer, H. F. Krug, Environ. Health Perspect. 1994, 3, 325.
[16] (a) B. Samuelsson, S. E. Dahlen, J. Lindgren, C. A. Rouzer, C. N. Serhan, Science 1987, 237, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXls1yrsb4%3D&md5=19e2b912c132d17ea9278bbbc08013eaCAS |
(b) M. J. Knapp, J. P. Klinman, Biochemistry 2003, 42, 11466.
| Crossref | GoogleScholarGoogle Scholar |
(c) X.-Z. Ding, C. A. Kuszynski, T. H. El-Metwally, T. E. Adrian, Biochem. Biophys. Res. Commun. 1999, 266, 392.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) N. G. Bokii, G. N. Zakharova, Yu. T. Struchkov, J. Struct. Chem. 1970, 11, 247.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. S. Tse, F. L. Lee, E. J. Gabe, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1986, 42, 1876.
(c) S. Weng Ng, Acta Crystallogr Sect. C: Cryst. Struct. Commun. 1995, 51, 2292.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) C. Glidewell, D. C. Liles, Acta Crystallogr. B 1978, 34, 129.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Glidewell, J. N. Low, J. A. S. Bomfim, C. A. L. Filgueiras, J. L. Wardell, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2002, 58, m199.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-x. Fu, J.-h. Zhang, C.-l. Ma, Z.-t. Zhang, Chin. J. Synth. Chem. 2003, 11, 189.
[19] (a) J. F. Vollano, R. O. Day, R. R. Holmes, Organometallics 1984, 3, 745.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXitFSjsLc%3D&md5=2f16c541b949e996823e87deab4547d1CAS |
(b) E. R. T. Tiekink, Acta Crystallogr., Sect. C. Cryst. Struct. Commun. 1991, 47, 661.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. A. Kresinski, R. J. Staples, J. P. Fackler, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1994, 50, 40.
(d) M. J. Cox, E. R. Tiekink, Z. Kristallogr. 1994, 209, 622.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) V. Boudnitskaya, I. G. Borisova, FEBS Lett. 1972, 24, 359.
| Crossref | GoogleScholarGoogle Scholar |
(b) F. Husson, Y. Pagot, S. Kermasha, J. M. Belin, Enzyme Microb. Technol. 1998, 23, 42.
| Crossref | GoogleScholarGoogle Scholar |
[21] I. I. Ozturk, A. K. Metsios, S. Filimonova-Orlova, N. Kourkoumelis, S. K. Hadjikakou, M. Manos, A. J. Tasiopoulos, S. Karkabounas, E. R. Milaeva, N. Hadjiliadis, Med. Chem. Res. 2012, 21, 3523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2lsLrM&md5=0af810d0f4dd16a7b3a41edff0687d2bCAS |
[22] (a) C. N. Banti, A. D. Giannoulis, N. Kourkoumelis, A. M. Owczarzak, M. Poyraz, M. Kubicki, K. Charalabopoulos, S. K. Hadjikakou, Metallomics 2012, 4, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvVOns7c%3D&md5=8c7edc52faf41359603341069d5cc15aCAS |
(b) C. N. N’soukpoe-Kossi, C. Descoteaux, E. Asselin, H. A. Tajmir-Riahi, G. Berube, DNA Cell Biol. 2008, 27, 101.
| Crossref | GoogleScholarGoogle Scholar |
[23] H. Niyazi, J. P. Hall, K. O’Sullivan, G. Winter, T. Sorensen, J. M. Kelly, C. J. Cardin, Nat. Chem. 2012, 4, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyrt7c%3D&md5=a01f62ee41cf83beb956745086c450ccCAS |
[24] M. H. Hanigan, P. Devarajan, Cancer Ther. 2003, 1, 47.
[25] (a) G. M. Sheldrick, University of Göttingen, Germany 1997.
(b) M. C. Burla, R. Caliandro, B. Carrozzini, G. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, J. Appl. Cryst. 2004, 37, 258.
| Crossref | GoogleScholarGoogle Scholar |
[26] (a) A. Gorman, J. McCarthy, D. Finucane, W. Reville, T. Cotter, Techniques in Apoptosis. A User’s Guide (Eds T. G. Cotter, S. J. Martin) 1996, pp. 6 (Portland Press Ltd: London, UK).
(b) P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. T. Papazisis, G. D. Geromichalos, K. A. Dimitriadis, A. H. Kortsaris, J. Immunol. Methods 1997, 208, 151.
| Crossref | GoogleScholarGoogle Scholar |
[27] (a) R. Thomsen, M. H. Christensen, J. Med. Chem. 2006, 49, 3315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFyiu7w%3D&md5=fa7ba8e130b50c50c348441db57ddedaCAS |
(b) R. Abagyan, M. Totrov, J. Mol. Biol. 1994, 235, 983.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. Abagyan, M. Totrov, D. Kuznetsov, J. Comput. Chem. 1994, 15, 488.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. Nemethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, H. A. Scheraga, J. Phys. Chem. 1992, 96, 6472.
| Crossref | GoogleScholarGoogle Scholar |