Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Ion-Pair Recognition by Metal–Salophen and Metal–Salen Complexes

Francesco Yafteh Mihan A , Silvia Bartocci A , Michele Bruschini A , Paolo De Bernardin A , Gianpiero Forte A , Ilaria Giannicchi A and Antonella Dalla Cort A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and IMC-CNR, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.

B Corresponding author. Email: antonella.dallacort@uniroma1.it




Antonella Dalla Cort studied chemistry in Rome at the University La Sapienza. After spending almost 2 years as a post-doctoral-fellow with Professor Barry M. Trost she started her career as a researcher at the University La Sapienza, where she became an associate professor in organic chemistry in 2007. Her major research interests involve molecular recognition and supramolecular catalysis. Currently she is the Chair of COST Action “Supramolecular Chemistry in Water”.

Australian Journal of Chemistry 65(12) 1638-1646 https://doi.org/10.1071/CH12353
Submitted: 27 July 2012  Accepted: 10 September 2012   Published: 22 October 2012

Abstract

The development of heteroditopic receptor systems that can simultaneously bind cationic and anionic species is one of the most challenging research topics in supramolecular chemistry, attracting the attention of a large number of research groups worldwide. Such an interest is due especially to the fact that the overall receptor–ion-pair complex is neutral and this can be advantageous in many situations, such as salt solubilization and extraction, and membrane-transport applications. Receptors designed for ion-pair complexation are molecules comprising well-known anion-binding motifs and familiar cation-binding sites. An important family of compounds that can use metal Lewis-acidic centres for anion recognition and that can be easily derivatized to introduce an additional binding site for the cation is metal–salophen and metal–salen complexes. This short review shows that the high versatility of salen and salophen ligands and of the corresponding metal complexes allows, through simple modifications of the basic skeleton, the obtention of highly efficient receptors for ion pairs.


References

[1]  (a) A. J. McConnell, P. D. Beer, Angew. Chem. Int. Ed. 2012, 51, 5052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWmu70%3D&md5=cdec8e1c40634a22f4d1df80111552a2CAS |
         (b) A. Dalla Cort, Ion-pair Receptors in Supramolecular Chemistry: from Molecules to Nanomaterials (Eds J. W. Steed and P. A. Gale) 2012, pp. 1281–1308 (John Wiley & Sons Inc. Chichester).
      (c) M. Wenzel, J. R. Hiscock, P. A. Gale, Chem. Soc. Rev. 2012, 41, 480.
      (d) S. K. Kim, J. L. Sessler, Chem. Soc. Rev. 2010, 39, 3784.

[2]     (a) Supramolecular Chemistry of Anions (Eds A. Bianchi, K. Bowman-James, E. García-España) 1997 (Wiley: New York, NY).
      (b) P. D. Beer, P. A. Gale, Angew. Chem. Int. Ed. 2001, 40, 486.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. M. Llinares, D. Powell, K. Bowman-James, Coord. Chem. Rev. 2003, 240, 57.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  C. Duranton, S. M. Huber, F. J. Lang, J. Physiol. 2002, 539, 847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1ejs7o%3D&md5=da8bbb20d534db82af37cfa97e37177eCAS |

[4]  G. W. Gokel, in Comprehensive Supramolecular Chemistry (Eds J.-M. Lehn, J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vogtle) 1996, Vol. 1 (Pergamon: Oxford).

[5]  V. Amendola, L. Fabbrizzi, Chem. Commun. 2009, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVOgsg%3D%3D&md5=ee7e3c4e9bb8aaa4066d0388dead665aCAS |

[6]  C. Caltagirone, P. A. Gale, Chem. Soc. Rev. 2009, 38, 520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVSntbo%3D&md5=0d687afe529b4953e8b6b70d528c5d69CAS |

[7]  V. Böhmer, A. Dalla Cort, L. Mandolini, J. Org. Chem. 2001, 66, 1900.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  P. A. Gale, in Supramolecular Chemistry and Nanochemistry (Eds J. W. Steed, D. R. Turner and K. J. Wallace) 2007, p. 73 (John Wiley & Sons, Inc.: Chichester).

[9]  P. A. Vigato, S. Tamburini, Coord. Chem. Rev. 2004, 248, 1717.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptV2rtbo%3D&md5=4cda23acaa71351bc85348e74212f2bcCAS |

[10]  P. Pfeiffer, E. Breith, E. Lübbe, T. Tsumaki, Liebigs Ann. 1933, 503, 84.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA3sXkslWhug%3D%3D&md5=14a9a8d438eb09335c852bcf80dfbee5CAS |

[11]  T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitVSjtLg%3D&md5=56a61ba6619acb2cb6e1f323edd31a52CAS |

[12]  W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFOqtLw%3D&md5=a011f6044c361467bd63b4f42eff400cCAS |

[13]  R. Irie, K. Noda, Y. Ito, N. Matsumoto, T. Katsuki, Tetrahedron Lett. 1990, 31, 7345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhs1erurk%3D&md5=879db852f606f8953ece00062982a72aCAS |

[14]  Y. L. Bennani, S. Hanessian, Chem. Rev. 1997, 97, 3161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFSitLo%3D&md5=2494d23d69c4386cab563dcc6903bc32CAS |

[15]  C.-M. Che, J.-S. Huang, Coord. Chem. Rev. 2003, 242, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Cnu78%3D&md5=4295547f6111f390cf26c84b3f085b5cCAS |

[16]  H. Nishikori, T. Katsuki, Tetrahedron Lett. 1996, 37, 9245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVGitQ%3D%3D&md5=8a9e9ac6d8fb896738649620c26e6f5cCAS |

[17]  (a) A. Dalla Cort, L. Mandolini, C. Pasquini, L. Schiaffino, J. Org. Chem. 2005, 70, 9814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFalu7vE&md5=58f895ea1c93b79138478854b3e87e7bCAS |
      (b) A. Ciogli, A. Dalla Cort, F. Gasparrini, L. Lunazzi, A. Ciogli, A. Dalla Cort, F. Gasparrini, L. Lunazzi, J. Org. Chem. 2008, 73, 6108.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  P. G. Cozzi, Chem. Soc. Rev. 2004, 33, 410.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlWmtLc%3D&md5=0ea2086726ec45e180ca0869b4fe9ab6CAS |

[19]  R. M. Haak, S. J. Wezenberg, A. W. Kleij, Chem. Commun. 2010, 2713.For a recent review on multimetallic catalysis using metallosalens, see
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Citrs%3D&md5=a332a1e2e1074be06e92502e08db154cCAS |

[20]  N. H. Lee, C. S. Lee, D. S. Jung, Tetrahedron Lett. 1998, 39, 1385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Sgur8%3D&md5=f4b25638a0857dd6320e534c2b0fbfaeCAS |

[21]  B. Bahramian, V. Mirkhani, M. Moghadam, A. H. Amin, Appl. Catal. A Gen. 2006, 315, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2ksrnN&md5=73e22a640b9aa8eb777b31b038bfd46fCAS |

[22]  N. S. Venkataramanana, G. Kuppuraja, S. Rajagopal, Coord. Chem. Rev. 2005, 249, 1249.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Omura, T. Uchida, R. Irie, T. Katsuki, Chem. Commun. 2004, 2060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFWitr8%3D&md5=3748f9a3477544b946d7647f2b3d0063CAS |

[24]  (a) J. D. McGilvra, V. H. Rawal, Synlett 2004, 2440.
         | 1:CAS:528:DC%2BD2cXpvV2hurc%3D&md5=59654442610346d319e90ac69729f1b6CAS |
      (b) A. Dalla Cort, L. Mandolini, L. Schiaffino, Chem. Commun. 2005, 3867.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  C. K. Shin, S. J. Kim, G. J. Kim, Tetrahedron Lett. 2004, 45, 7429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVCqu7k%3D&md5=239be347ff105131aad15fbefe39b97bCAS |

[26]  E. H. Nejad, C. G. W. van Melis, T. J. Vermeer, C. E. Koning, R. Duchateau, Macromolecules 2012, 45, 1770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFagt7s%3D&md5=3fdb7914976cdbf04bbffe28955d2f50CAS |

[27]  T. Maeda, T. Takeuchi, Y. Furusho, T. Takata, J. Polym. Sci. A Polym. Chem. 2004, 42, 4693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFWkurw%3D&md5=568c9185d6abfb9c2d22f9b9eed14005CAS |

[28]  S. S. Kim, G. Rajagopal, Synthesis 2003, 2461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsV2htLw%3D&md5=727edf3aa53bc645e5d7417839527092CAS |

[29]  (a) S. B. Routier, J. L. Bernier, M. P. Catteau, C. Bailly, Bioorg. Med. Chem. Lett. 1997, 7, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1ehtw%3D%3D&md5=bd72eef2842cf799ae23f661fc4bd018CAS |
      (b) A. Puglisi, G. Tabbi, G. Vecchio, J. Inorg. Biochem. 2004, 98, 969.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  O. Alptürk, O. Rusin, S. O. Fakayode, W. Wang, J. O. Escobedo, I. M. Warner, W. E. Crowe, V. Král, J. M. Pruet, R. M. Strongin, Proc. Natl. Acad. Sci. USA 2006, 103, 9756.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  T. S. Lange, K. K. Kim, R. K. Singh, R. M. Strongin, C. K. McCourt, L. Brard, PLoS ONE 2008, 3, e2303.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  S. R. Doctrow, K. Huffman, C. B. Marcus, G. Tocco, E. Malfroy, C. A. Adinolfi, H. Kruk, K. Baker, N. Lazarowych, J. Mascarenhas, B. Malfroy, J. Med. Chem. 2002, 45, 4549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFWjsr0%3D&md5=c4a13a7be28531bde742b01286d4eb3bCAS |

[33]  N. H. Campbell, N. H. Abd Karim, G. N. Parkinson, M. Gunaratnam, V. Petrucci, A. K. Todd, R. Vilar, S. Neidle, J. Med. Chem. 2012, 55, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFejtbrM&md5=f9ad945bddb891065e171e38008f4ffeCAS |

[34]  T. R. J. Achard, W. Clegg, R. W. Harrington, M. North, Tetrahedron 2012, 68, 133. and references therein
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFert77J&md5=6d6b17447b32c1ba6a5ce8084d525af0CAS |

[35]  (a) S. J. Wezenberg, A. W. Kleij, Angew. Chem. Int. Ed. 2008, 47, 2354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFSgtrY%3D&md5=385b51e0d45beaa09a30e421d898c7d1CAS |
      (b) C. Zhang, X. Zhang, X. Zhang, X. Ou, W. Zhang, J. Jie, J. C. Chang, C.-S. Lee, S.-T. Lee, Adv. Mater. 2009, 21, 4172.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. J. Sabater, M. Alvaro, H. Garcia, E. Palomares, J. C. Scaiano, J. Am. Chem. Soc. 2001, 123, 7074.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Wis70%3D&md5=f2eaa381ebdf2c554432c9923aa3d9f5CAS |

[37]  P. G. Cozzi, L. S. Dolci, A. Garelli, M. Montalti, L. Prodi, N. Zaccheroni, New J. Chem. 2003, 27, 692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlylu7c%3D&md5=383777faede7f2068852ed43ac140d91CAS |

[38]  G. Consiglio, S. Failla, I. P. Oliveti, R. Purrello, S. Di Bella, Dalton Trans. 2009, 10426.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtLzO&md5=4553efe178f1eabdad488a154b13770fCAS |

[39]  (a) A. D. Garnovskii, A. L. Nivorozhkin, V. I. Minkin, Coord. Chem. Rev. 1993, 126, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlsFSqurw%3D&md5=b88e1b3df432aee62a7d20e28ec23ebfCAS |
      (b) F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-Aman, J.-L. J. Pierre, Dalton Trans. 2004, 2662.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. Ephritikhine, Dalton Trans. 2006, 2501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVSrsbk%3D&md5=c60e89281e3b73bec50944c55852f04dCAS |

[41]  D. M. Rudkevich, Z. Brzozka, M. Palys, H. C. Visser, W. Verboom, D. N. Reinhoudt, Angew. Chem. Int. Ed. Engl. 1994, 33, 467.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. Späth, B. König, Beilstein J. Org. Chem. 2010, 6, 32.and references therein
         | Crossref | GoogleScholarGoogle Scholar |

[43]  (a) J. J. Christensen, D. J. Eatough, R. M. Izzat, Chem. Rev. 1974, 74, 351.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen, D. Sen, Chem. Rev. 1985, 85, 271.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening, Chem. Rev. 1991, 91, 1721.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  A. Dalla Cort, L. Mandolini, C. Pasquini, L. Schiaffino, Org. Biomol. Chem. 2006, 4, 4543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OhsbfM&md5=d208501869393c10c194a54970430cf9CAS |

[45]  J. Tedim, R. Bessada, S. Patrıcio, A. L. Magalhães, C. Freire, S. J. Gurman, A. R. Hillman, Langmuir 2008, 24, 8998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVWisro%3D&md5=17ca0478ad5158051acbed1c91923eb4CAS |

[46]  J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksV2kurk%3D&md5=7f0bebdb08a7507f27c75fb33bdc7653CAS |

[47]  M. Cametti, M. Nissinen, A. Dalla Cort, L. Mandolini, K. Rissanen, J. Am. Chem. Soc. 2007, 129, 3641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVajtb8%3D&md5=aac3b97ea4f3a70e0643f308a2fdb136CAS |

[48]  A. Dalla Cort, P. De Bernardin, G. Forte, F. Yafteh Mihan, Chem. Soc. Rev. 2010, 39, 3863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKksb7K&md5=7235e8341eba76013deceb87bcb1ac18CAS |

[49]  M. Cametti, M. Nissinen, A. Dalla Cort, L. Mandolini, K. Rissanen, Chem. Commun. 2003, 2420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlWhsbw%3D&md5=72d9ff5a5a1484e86e8d151fec536fa1CAS |

[50]  M. Cametti, A. Dalla Cort, L. Mandolini, Chem. Sci. 2012, 3, 2119.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt12qt7o%3D&md5=6e695dd49bf000ed1968d92d152b5d22CAS |

[51]  M. Cametti, M. Nissinen, A. Dalla Cort, L. Mandolini, K. Rissanen, J. Am. Chem. Soc. 2005, 127, 3831.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Cqt7g%3D&md5=0dc0162ff1eea6c004bb75e6a228ad12CAS |

[52]  F. P. Ballistreri, A. Pappalardo, G. A. Tomaselli, R. M. Toscano, G. Trusso Sfrazzetto, Eur. J. Org. Chem. 2010, 3806.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2rt70%3D&md5=cf740d4b8820b8e6a25f9abc4761ee05CAS |

[53]  M. E. Amato, F. P. Ballistreri, S. Gentile, A. Pappalardo, G. A. Tomaselli, R. M. Toscano, J. Org. Chem. 2010, 75, 1437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslShs7k%3D&md5=49f5e19966414bb6a4a4b281ad411f95CAS |

[54]  V. Böhmer, A. Dalla Cort, L. Mandolini, J. Org. Chem. 2001, 66, 1900.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  M. E. Amato, F. P. Ballistreri, S. D’Agata, A. Pappalardo, G. A. Tomaselli, R. M. Toscano, G. Trusso Sfrazzetto, Eur. J. Org. Chem. 2011, 5674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gt7bF&md5=3d6223bea0397d12cf6e48a0f8d756ccCAS |

[56]  J. W. Steed, J. L. Atwood, Supramolecular Chemistry 2009 (John Wiley & Sons, Inc.: Chichester).

[57]  H. A. Miller, N. Laing, S. Parsons, A. Parkin, P. A. Tasker, D. J. White, J. Chem. Soc., Dalton Trans. 2000, 3773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlKmt7c%3D&md5=4fbeb9ddfe8306b29fabf0bd674dfce8CAS |

[58]  S. G. Galbraith, Q. Wang, L. Li, A. J. Blake, C. Wilson, S. R. Collinson, L. F. Lindoy, P. G. Plieger, M. Schröder, P. A. Tasker, Chemistry 2007, 13, 6091.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlamtr8%3D&md5=5cf10d50f732abb0b392ebd09b307d40CAS |

[59]  T. Lin, V. Gasperov, K. J. Smith, C. C. Tong, P. A. Tasker, Dalton Trans. 2010, 39, 9760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OisL3J&md5=4ffb27a5d01777d4a6283935fe664792CAS |

[60]  G. W. Bates, J. E. Davidson, R. S. Forgan, P. A. Gale, D. K. Henderson, M. G. King, M. E. Light, S. J. Moore, P. A. Tasker, C. C. Tong, Supramol. Chem. 2012, 24, 117.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltVyisL4%3D&md5=a581f3822036f3663f91ae5f759f4f89CAS |

[61]  M. Wenzel, S. R. Bruere, Q. W. Knapp, P. A. Tasker, P. G. Plieger, Dalton Trans. 2010, 39, 2936.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXislaitLw%3D&md5=ad9cb8e6e90931cc80317617db3c7f19CAS |

[62]  J. Y.-C. Chang, S. Parsons, P. G. Plieger, P. A. Tasker, J. Incl. Phenom. Macrocycl. Chem. 2011, 71, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGqt7fF&md5=7a8046a552ca4d7b5ab828d38b3e0797CAS |

[63]  R. S. Forgan, J. E. Davidson, F. P. A. Fabbiani, S. G. Galbraith, D. K. Henderson, S. A. Moggach, S. Parsons, P. A. Tasker, F. J. White, Dalton Trans. 2010, 39, 1763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCqtr8%3D&md5=1f797774daa769a8b65f2dd11c9ad1f0CAS |