Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Detection of Advanced Glycation End-Products (AGEs) During Dry-State Storage of β-Lactoglobulin/Lactose

Sisse Jongberg A , Michael Rasmussen A B , Leif H. Skibsted A and Karsten Olsen A C
+ Author Affiliations
- Author Affiliations

A Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.

B Current address: Department of International Health, Immunology and Microbiology, Panum Instituttet, University of Copenhagen, Blegdamsvej 3, DK-2200 København N, Denmark.

C Corresponding author. Email: ko@life.ku.dk

Australian Journal of Chemistry 65(12) 1620-1624 https://doi.org/10.1071/CH12442
Submitted: 29 June 2012  Accepted: 20 October 2012   Published: 16 November 2012

Abstract

Glycation of whey proteins is primarily affected by temperature, water activity, and pH, and leads to changes of the functional and nutritional properties of the proteins. In the case of prolonged storage of mixtures of lactose and β-lactoglobulin as a model for dried dairy products under mild heat treatment (60–70°C) in a restricted water environment (aw 0.64) at pH 7, Nϵ-(carboxymethyl)lysine (CML) and furosine were formed concomitant with glycation of β-lactoglobulin. Indirect ELISA using polyclonal antibodies against advanced glycation end products (AGEs) was shown to correlate with analyses of CML using HPLC and may be used for quality control of dried dairy products. The glycation changed the solubility properties of the protein by forming polymeric carbohydrate products of β-lactoglobulin and AGEs as characterised by SDS–PAGE.


References

[1]  S. Damodaran, in Food Proteins and their Applications (Eds S. Damodaran, A. Paraf) 1997, pp. 57–110 (Marcel Dekker: New York, NY).

[2]  F. Chevalier, J. M. Chobert, Y. Popineau, M. G. Nicolas, T. Haertle, Int. Dairy J. 2001, 11, 145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ShsbY%3D&md5=933bffb8454ff27327b1a35e34503d62CAS |

[3]  A. Medrano, C. Abirached, L. Panizzolo, P. Moyna, M. C. Anon, Food Chem. 2009, 113, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2ntLbF&md5=346f099aa42b8f4970e1bf40d33a900eCAS |

[4]  M. K. Thomsen, K. Olsen, J. Otte, K. Sjøstrøm, B. B. Werner, L. H. Skibsted, Int. Dairy J. 2012, 23, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFyisw%3D%3D&md5=e7bef608bc1c8b5cf299e764fa646f82CAS |

[5]  F. Morgan, D. Molle, G. Henry, A. Venien, J. Leonil, G. Peltre, D. Levieux, J. L. Maubois, S. Bouhallab, Int. J. Food Sci. Technol. 1999, 34, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1elt7k%3D&md5=c2959472e60d42345873b7a6aed4c86bCAS |

[6]  S. J. French, W. J. Harper, N. M. Kleinholz, R. B. Jones, K. B. Green-Church, J. Agric. Food Chem. 2002, 50, 820.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvFOitQ%3D%3D&md5=f1c2a33b843423d589e956af80b8853dCAS |

[7]  R. Singh, A. Barden, T. Mori, L. Beilin, Diabetologia 2001, 44, 129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlSltg%3D%3D&md5=cd9d0e3d766dd512415e41ac1d56639bCAS |

[8]  J. M. Ames, Mol. Nutr. Food Res. 2007, 51, 1085.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOnu73M&md5=83d7b4d05add62b09c19664129e5e8e4CAS |

[9]  K. Sebekova, V. Somoza, Mol. Nutr. Food Res. 2007, 51, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOnu7zF&md5=540491dcb9dfa4a1e7c340b89b7af06bCAS |

[10]  H. F. Erbersdobler, V. Somoza, Mol. Nutr. Food Res. 2007, 51, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlagtbg%3D&md5=c2a3f07d0019722d7a80fa081932022bCAS |

[11]  J. A. B. Baptista, R. C. B. Carvalho, Food Res. Int. 2004, 37, 739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1Wku70%3D&md5=1d0870292162823861d9305aec3d8f53CAS |

[12]  M. U. Ahmed, S. R. Thorpe, J. W. Baynes, J. Biol. Chem. 1986, 261, 4889.
         | 1:CAS:528:DyaL28Xkt1anu74%3D&md5=66d132d276843618b225cebc1dee9543CAS |

[13]  J. Hartkopf, C. Pahlke, G. Ludemann, H. F. Erbersdobler, J. Chromatogr. A 1994, 672, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVKrsrw%3D&md5=a0c66a3b296a2ee79a06a0d0d220c105CAS |

[14]  S. Reddy, J. Bichler, K. J. Wells-Knecht, S. R. Thorpe, Biochemistry 1995, 34, 10872.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVKrtbY%3D&md5=fca3462320a7a49e90446e6c072f2804CAS |

[15]  F. Chevalier, J. M. Chobert, D. Molle, T. Haertle, Lait 2001, 81, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFehs7s%3D&md5=d1e9948b9c7a76575e29b20f750e83beCAS |

[16]  R. Krause, K. Knoll, T. Henle, Eur. Food Res. Technol. 2003, 216, 277.
         | 1:CAS:528:DC%2BD3sXisleqsLY%3D&md5=05f7ce71d41231c01f573b1b68b3b6e9CAS |

[17]  K. R. Kristiansen, J. Otte, R. Ipsen, K. B. Qvist, Int. Dairy J. 1998, 8, 113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVajt7c%3D&md5=de88539e5e71f6d5a6a5c809f913a662CAS |

[18]  S. Drusch, V. Faist, H. F. Erbersdobler, Food Chem. 1999, 65, 547.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFKgsrg%3D&md5=8e4534d9f9d2638cac1f1a27df8f91d4CAS |

[19]  D. Aswad, Anal. Biochem. 1984, 137, 405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhsFKqtL8%3D&md5=931c29fcc84acc4fdddcb28eae5936d6CAS |

[20]  P. Resmini, L. Pellegrino, G. Battelli, Italian J. Food Sci. 1990, 3, 173.