Structure of Regenerated Celluloses Treated with Ionic Liquids and Comparison of their Enzymatic Digestibility by Purified Cellulase Components
Masahiro Mizuno A , Shuji Kachi A , Eiji Togawa B , Noriko Hayashi B , Kouichi Nozaki A , Toshiyuki Itoh C and Yoshihiko Amano A DA Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
B Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
C Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama Minami, Tottori 680-8552, Japan.
D Corresponding author. Email: yoamano@shinshu-u.ac.jp
Australian Journal of Chemistry 65(11) 1491-1496 https://doi.org/10.1071/CH12342
Submitted: 18 July 2012 Accepted: 2 October 2012 Published: 29 October 2012
Abstract
In this study, regenerated celluloses were prepared from microcrystalline cellulose (MCC) by treatment with three ionic liquids (ILs) having 1-ethyl-3-methylimidazolium (Emim) as the cation, and the IL N-(2-methoxyethyl)-N,N-diethyl-N-methylammonium alanine ([N221ME][Ala]), where the amino acid moiety is the anion. The crystal form of cellulose was transformed from cellulose I to cellulose II by dissolution with an IL and regeneration with anti-solvent. However, the crystallinity of the regenerated cellulose was different; the disordered chain region was increased in the order of [N221ME][Ala] < [Emim][OAc] < [Emim][DEP] < [Emim][Cl]. The monocomponent cellulase, especially endoglucanase, showed high hydrolyzing activity for regenerated cellulose compared with untreated cellulose. Furthermore, the degree of increase of hydrolyzing activity was almost coincident with the order of crystallinity. For the effective hydrolysis of cellulose treated with an IL, it is necessary to prepare the cellulase mixture containing an adequate ratio of each cellulase component according to crystal allomorph and the crystallinity of regenerated cellulose.
References
[1] G. Brodeur, E. Yau, K. Badal, J. Collier, K. B. Ramchandran, S. Ramakrishnan, Enzyme Res. 2011, 2011, 1.| Crossref | GoogleScholarGoogle Scholar |
[2] R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers, J. Am. Chem. Soc. 2002, 124, 4974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVOmt70%3D&md5=40b751be280e664b18989fc93a69f6b4CAS |
[3] A. Xu, J. Wang, H. Wang, Green Chem. 2010, 12, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsleqsLg%3D&md5=a54c1b2ec4943fce0a0fd8fa9def557eCAS |
[4] H. Wang, G. Gurau, D. Rogers, Chem. Soc. Rev. 2012, 41, 1519.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVajsrw%3D&md5=0d7b4b981a1c2dbba348a838a7377493CAS |
[5] A. P. Dadi, S. Varanasi, C. A. Schall, Biotechnol. Bioeng. 2006, 95, 904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2qsrfJ&md5=97a8cfdf73a04175fc41c169e5df1933CAS |
[6] K. Wang, H. Y. Yang, F. Xu, R. C. Sun, Bioresour. Technol. 2011, 102, 4524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitVWnurs%3D&md5=131ba73d03635ae9b9ae8be008697b52CAS |
[7] A. Sant’Ana da Silva, S. H. Lee, T. Endo, E. P. Bon, Bioresour. Technol. 2011, 102, 10505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKrt7jP&md5=0cd6084972a2b6223a7823ae3111a0beCAS |
[8] H. Zhao, C. L. Jones, G. A. Baker, S. Xia, O. Olubajo, V. N. Person, J. Biotechnol. 2009, 139, 47.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2ltrrN&md5=8f65e0035881ffa4fa401edb564ea6d7CAS |
[9] J. Kolbe, C. P. Kubicek, Appl. Microbiol. Biotechnol. 1990, 34, 26.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtFOlsbk%3D&md5=d5de0c4ec7b9a980304fd36f6af6db7eCAS |
[10] Y. Amano, K. Nozaki, T. Araki, H. Shibasaki, S. Kuga, T. Kanda, Cellulose 2001, 8, 267.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1Ohtb8%3D&md5=bcf5e7948dfa73366846d0529d51bea1CAS |
[11] J. Kunze, G. Scheler, B. Schröter, B. Philipp, Polym. Bull. 1983, 10, 56.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXksVSjs7Y%3D&md5=5b906d3b4a3f382a6785c4bdead81e05CAS |
[12] M. Wada, L. Heux, Y. Nishiyama, P. Langan, Biomacromolecules 2009, 10, 302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtLnJ&md5=84be0aa9868c999586e138d8a68150f3CAS |
[13] M. L. Nelson, R. T. O’Connor, J. Appl. Polym. Sci. 1964, 8, 1325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktFyku7k%3D&md5=7efbe89e1b8139f147530af417bf743aCAS |
[14] M. L. Nelson, R. T. O’Connor, J. Appl. Polym. Sci. 1964, 8, 1311.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktFyku7g%3D&md5=b2816192fe3d4501edcf17e8d3b321d8CAS |
[15] J. Hong, X. Ye, Y.-H. P. Zhang, Langmuir 2007, 23, 12535.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OhsbrE&md5=d1c1c3d8f0aae89e9586f0b3fccf8f35CAS |
[16] T. Kawakubo, S. Karita, Y. Araki, S. Watanabe, M. Oyadomari, R. Takada, F. Tanaka, K. Abe, T. Watanabe, Y. Honda, T. Watanabe, Biotechnol. Bioeng. 2010, 105, 499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WjsbnK&md5=756d7d76084120dcd129fddcd77f0bc7CAS |
[17] Y. Wang, M. Radosevich, D. Hayes, N. Labbé, Biotechnol. Bioeng. 2011, 108, 1042.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvV2qu74%3D&md5=80f8d4a43f3929badca52225a7f24c44CAS |
[18] K. Ohira, Y. Abe, M. Kawatsura, K. Suzuki, M. Mizuno, Y. Amano, T. Itoh, ChemSusChem 2012, 5, 388.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSmsLo%3D&md5=53758602233d7072485f3fc76106fff2CAS |
[19] T. Imai, C. Boisset, M. Samejima, K. Igarashi, J. Sugiyama, FEBS Lett. 1998, 432, 113.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFWrtLo%3D&md5=dddb6a9c6640bb91233b05e0239d0156CAS |
[20] K. Igarashi, A. Koivula, M. Wada, S. Kimura, M. Penttilä, M. Samejima, J. Biol. Chem. 2009, 284, 36186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyiurrN&md5=a8c4b9eeaf4c4d9ff276980b8e13f044CAS |
[21] K. Igarashi, T. Uchihashi, A. Koivula, M. Wada, S. Kimura, M. Penttilä, T. Ando, M. Samejima, Methods Enzymol. 2012, 510, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Squ7%2FN&md5=617735fd884c1b3f16fb93ea4703ffb7CAS |
[22] A. Pinkert, K. N. Marsh, S. Pang, M. P. Staiger, Chem. Rev. 2009, 109, 6712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjt7nJ&md5=0f993cddf483c7cdfe358d5540affb9dCAS |
[23] K. Nozaki, H. Nishijima, T. Arai, M. Mizuno, N. Sato, Y. Amano, J. Appl. Glycosci. 2011, 58, 133.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFaqtbw%3D&md5=5d7e0bd67298d184ce14f514159d8927CAS |
[24] H. Toda, S. Takada, Y. Amano, T. Kanda, M. Okazaki, M. Shimosaka, J. Appl. Glycosci. 2005, 52, 23.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVOqsbk%3D&md5=796795bb88435e89336f280a95e9c5acCAS |
[25] N. Nelson, J. Biol. Chem. 1944, 153, 375.
| 1:CAS:528:DyaH2cXjtFenuw%3D%3D&md5=72501e861b494e89783386aa36301addCAS |