Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Benchmark Values: Thermochemistry of the Ionic Liquid [C4Py][Cl]

Sergey P. Verevkin A B G , Dzmitry H. Zaitsau A , Vladimir N. Emel’yanenko A , Ricardas V. Ralys A , Christoph Schick B C , Monika Geppert-Rybczyńska D , Saivenkataraman Jayaraman E and Edward J. Maginn F
+ Author Affiliations
- Author Affiliations

A Department of Physical Chemistry, University of Rostock, 18059 Rostock, Germany.

B Faculty of Interdisciplinary Research, Department of ‘Life, Light and Matter’, University of Rostock, Germany.

C Department of Physics, University of Rostock, Rostock, 18057 Rostock, Germany.

D Institute of Chemistry, University of Silesia, 40-006 Katowice, Poland.

E Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

F Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

G Corresponding author. Email: sergey.verevkin@uni-rostock.de

Australian Journal of Chemistry 65(11) 1487-1490 https://doi.org/10.1071/CH12314
Submitted: 2 July 2012  Accepted: 27 July 2012   Published: 23 August 2012

Abstract

Differential scanning calorimetry (DSC) was used for the determination of the reaction enthalpy of the synthesis of the ionic liquid [C4Py][Cl] from pyridine and butyl chloride. A combination of DSC results with quantum chemical calculations presents an indirect technique to obtain enthalpy of vaporization of [C4Py][Cl]. In order to ascertain this indirect value, we used thermal gravimetric analysis (TGA) to derive enthalpy of vaporization directly from the isothermal mass-loss measurements. This new procedure was additionally validated with molecular dynamics (MD) simulations.


References

[1]  V. N. Emel’yanenko, S. P. Verevkin, A. Heintz, J. Am. Chem. Soc. 2007, 129, 3930.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislagsrc%3D&md5=c9dcad313bdafcce9a6d7eafc91b9aa3CAS |

[2]  Dz. H. Zaitsau, G. J. Kabo, A. A. Strechan, Y. U. Paulechka, A. Tschersich, S. P. Verevkin, A. Heintz, J. Phys. Chem. A 2006, 110, 7303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktlKmtbk%3D&md5=52a611f9cd65283f06708893b5233b32CAS |

[3]  S. P. Verevkin, Dz. H. Zaitsau, V. N. Emel’yanenko, A. Heintz, J. Phys. Chem. B 2011, 115, 12889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlalu73L&md5=f028bd6b46ed1023d9368166fef9cec4CAS |

[4]  J. M. S. S. Esperança, J. N. Canongia Lopes, M. Tariq, L. M. N. B. F. Santos, J. W. Magee, L. P. N. Rebelo, J. Chem. Eng. Data 2010, 55, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. P. Verevkin, V. N. Emel’yanenko, Dz. H. Zaitsau, R. V. Ralys, C. Schick, J. Phys. Chem. B 2012, 116, 4276.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1OmtLw%3D&md5=42c8736a05fbbc90476c68f7f68f4332CAS |

[6]  S. P. Verevkin, R. V. Ralys, Dz. H. Zaitsau, V. N. Emel’yanenko, C. Schick, Thermochim. Acta 2012, 538, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1GgtbY%3D&md5=57762b5680067aeb7bbf5428882fe526CAS |

[7]  M. S. Kelkar, E. J. Maginn, J. Phys. Chem. B 2007, 111, 9424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVyqsbk%3D&md5=3b468bc041d77f0edb3fae51a96193d2CAS |

[8]  J. D. Cox, G. Pilcher, Thermochemistry of Organic and Organometallic Compounds 1970 (Academic Press: London).

[9]  G. Stridh, S. Sunner, J. Chem. Thermodyn. 1975, 7, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsFCqu7g%3D&md5=7367fc41cd2a73f44a3b2a6542db067dCAS |

[10]  W. S. Ohlinger, P. E. Klunzinger, B. J. Deppmeier, W. J. Hehre, J. Phys. Chem. A 2009, 113, 2165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFGgt70%3D&md5=34400566cb0465d18ea63d65dde44145CAS |