Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Use of Bacterial Cellulose from Nata de Coco as Base Polymer for Liquid Membranes Containing Ionic Liquids

Michiaki Matsumoto A B , Masashi Yamamoto A and Kazuo Kondo A
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan.

B Corresponding author. Email: mmatsumo@mail.doshisha.ac.jp

Australian Journal of Chemistry 65(11) 1497-1502 https://doi.org/10.1071/CH12307
Submitted: 29 June 2012  Accepted: 4 August 2012   Published: 31 August 2012

Abstract

Bacterial cellulose is becoming a promising biopolymer for membrane separation due to its biocompatibility. We prepared bacterial cellulose membranes from nata de coco, an indigenous dessert of the Philippines, as a support or a base polymer in the liquid membrane process. When we prepared bacterial cellulose membranes in the presence of Aliquat 336 as an ionic liquid, we obtained stable bacterial cellulose membranes. We carried out two different permeation experiments on lactate and organic nitrogen compounds. In the case of lactate permeation, the lactate remained in the membrane phase due to the strong interaction between the cellulose and the lactate by hydrogen bonding. For organic nitrogen compounds without strong hydrogen bonding moieties, quinoline and pyridine successfully permeated through the membranes. Higher selectivity against heptane was observed than previously reported results. The bacterial membranes from nata de coco containing Aliquat 336 were found to be promising for the separation of organic nitrogen compounds.


References

[1]  L. C. Tomé, L. Brandão, A. M. Mendes, A. J. D. Silvestre, C. P. Neto, A. G. Gandini, C. S. R. Freire, I. M. Marrucho, Cellulose 2010, 17, 1203.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Z. Wan, L. Hong, S. R. Jia, Y. Huang, Y. Zhu, Y. L. Wang, H. J. Jiang, Compos. Sci. Technol. 2006, 66, 1825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlOgsLg%3D&md5=45e84e8579c563f5a8939458e50e6659CAS |

[3]  M. Nogi, H. Yano, Appl. Phys. Lett. 2006, 89, 233123.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  H. Yamamoto, F. Horii, A. Hirai, Cellulose 2006, 13, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xltlals74%3D&md5=f17a8c7230fd14d7cd9e85e3603c482fCAS |

[5]  W. Shen, S. Chen, S. Shi, X. Li, X. Zhang, W. Hu, H. Wang, Carbohydr. Polym. 2009, 75, 110.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCiu7vL&md5=c1b09dcbb19a58e53ed252627772887cCAS |

[6]  T. Oshima, K. Kondo, K. Ohto, K. Inoue, Y. Baba, React. Funct. Polym. 2008, 68, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVehs7%2FE&md5=04142747c9fd90da2e8fe077065cd5c2CAS |

[7]  T. Niide, H. Shiraki, T. Oshima, Y. Baba, N. Kamiya, M. Goto, Solv. Extr. Res. Develop., Japan 2010, 17, 147.

[8]  N. M. Kocherginsky, Q. Yang, L. Seelarn, Separ. Purif. Tech. 2007, 53, 171.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlyktg%3D%3D&md5=eb7c2f6a9b91cc0033c9b971c668af5eCAS |

[9]  L. D. Nghiem, P. Mornane, I. D. Potter, J. M. Perena, R. W. Cattrall, S. D. Kolev, J. Membr. Sci. 2006, 281, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSmsL0%3D&md5=414ac9388f8f758232e75f2091c45234CAS |

[10]  N. Halib, M. C. I. M. Amin, I. Ahmad, Sains Malays. 2012, 41, 205.
         | 1:CAS:528:DC%2BC38XktVKnsrg%3D&md5=28eee1873acf2b05d6612d759be6f0cdCAS |

[11]  M. Matsumoto, in Membrane Technology and Applications 2012, Ch. 17, pp. 305–316 (Eds K. Mohanty, M. K. Purkait) (CRC Press: Boca Raton, FL).

[12]  M. Matsumoto, Y. Murakami, K. Kondo, Solv. Extr. Res. Develop., Japan 2011, 18, 75.
         | 1:CAS:528:DC%2BC3MXnsVems7k%3D&md5=ce4b775f1c76fb0d220032a2512dd1d1CAS |

[13]  N. Pereira, A. St John, R. W. Cattrall, J. M. Perera, S. D. Kolev, Desalination 2009, 236, 327.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCju73P&md5=861cde2126b260c9a64884b144de9924CAS |

[14]  M. Matsumoto, W. Hasegawa, K. Kondo, T. Shimamura, M. Tsuji, Desal. Water Treat. 2010, 14, 37.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFGnur0%3D&md5=342435a6dfe60876dea27c9d752ff386CAS |

[15]  M. Matsumoto, A. Panigrahi, Y. Murakami, K. Kondo, Membranes 2011, 1, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlKmu7g%3D&md5=a0cca9eeb03a9bc9330ed1ae97152599CAS |

[16]  M. Matsumoto, Y. Murakami, Y. Minamidate, K. Kondo, Sep. Sci. Technol. 2012, 47, 354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOisL8%3D&md5=1a3a836f4f1016c1f4e6eb25572df381CAS |

[17]  M. Matsumoto, M. Mikami, K. Kondo, J. Jpn. Petrol. Inst. 2006, 49, 256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFSht7g%3D&md5=cc5fa990294ee4a982d6fdfcb8d3ddecCAS |

[18]  M. Matsumoto, R. Onaka, K. Kondo, Solv. Extr. Res. Develop., Japan 2012, 19, 147.
         | 1:CAS:528:DC%2BC38XotlKht74%3D&md5=c31ce6c9d3db63a45653ae78e21abcefCAS |