Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Disordered Mesoporous Gadolinosilicate Nanoparticles Prepared Using Gadolinium Based Ionic Liquid Emulsions: Potential as Magnetic Resonance Imaging Contrast Agents

Guozhen Liu A , Nicholas M. K. Tse A B , Matthew R. Hill A , Danielle F. Kennedy A and Calum J. Drummond A C
+ Author Affiliations
- Author Affiliations

A CSIRO Materials Science and Engineering (CMSE), Private Bag 10, Clayton South MDC, Vic. 3169, Australia.

B Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C Corresponding author. Email: calum.drummond@csiro.au

Australian Journal of Chemistry 64(5) 617-624 https://doi.org/10.1071/CH11064
Submitted: 7 February 2011  Accepted: 12 April 2011   Published: 30 May 2011

Abstract

Gadolinium doped mesoporous silica (gadolinosilicate) nanoparticles were synthesized using a novel approach aimed at incorporating Gd ions into a porous silica network. The ionic liquid, gadolinium (Z)-octadec-9-enoate (Gd Oleate) was utilized in a dual role, as a soft template to generate porous silica and also to act as a gadolinium source for incorporation into the silicate. The generated silicate materials were characterized for size, structure and composition, confirming that gadolinium was successfully doped into the silicate network in a mesoporous nanoparticulate form. Proton relaxivity results indicated that the gadolinium doped silicates had slightly lower longitudinal relaxivity and much higher transverse relaxivity than the commercial contrast agent Magnevist®, suggesting that the mesoporous nanoparticulate materials have potential as contrast agents for magnetic resonance imaging.


References

[1]  M. Bottrill, L. Kwok, N. J. Long, Chem. Soc. Rev. 2006, 35, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFOitLg%3D&md5=a4bc1d6d5aa4d2154ed8cde4cfea33fdCAS | 16729149PubMed |

[2]  S. Aime, C. Cabella, S. Colombatto, S. G. Crich, E. Gianolio, F. Maggioni, J. Magn. Reson. Imaging 2002, 16, 394.
         | Crossref | GoogleScholarGoogle Scholar | 12353255PubMed |

[3]  S. Mansson, A. Bjornerud, Physical principles of medical imaging by nuclear magnetic resonance 2001 (John Wiley & Sons Ltd: Chichester).

[4]  Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D Appl. Phys. 2003, 36, R167.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVChs78%3D&md5=9a63baaa5f910374b9ba3b92d78cbde2CAS |

[5]  M. Liong, S. Angelos, E. Choi, K. Patel, J. F. Stoddart, J. I. Zink, J. Mater. Chem. 2009, 19, 6251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeiurjJ&md5=1d0a656f18e499decc5e5ec27f5ca76aCAS |

[6]  A. Louie, Chem. Rev. 2010, 110, 3146.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOqsr4%3D&md5=068aefc526eee70ebd97a83dafb8e34bCAS | 20225900PubMed |

[7]  C. W. Lu, Y. Hung, J. K. Hsiao, M. Yao, T. H. Chung, Y. S. Lin, S. H. Wu, S. C. Hsu, H. M. Liu, C. Y. Mou, C. S. Yang, D. M. Huang, Y. C. Chen, Nano Lett. 2007, 7, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OmsL7P&md5=ce4054e18ea666850659a9ce7b7a96d9CAS | 17212455PubMed |

[8]  H. B. Na, I. C. Song, T. Hyeon, Adv. Mater. (Deerfield Beach Fla.) 2009, 21, 2133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVGqu78%3D&md5=f4598d4b5a362ef474d47ebbeb1ad9ceCAS |

[9]  E. Tóth, L. Helm, A. E. Merbach, Top. Curr. Chem. 2002, 221, 61.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  J. H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, M. J. Sailor, Nat. Mater. 2009, 8, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFKntbo%3D&md5=8e444dc67484b5e39af9222e8bd581bbCAS | 19234444PubMed |

[11]  N. Bloembergen, L. O. Morgan, J. Chem. Phys. 1961, 34, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhsVWntL8%3D&md5=466cdd8a92706f41f3937a3b20c51915CAS |

[12]  I. Solomon, Phys. Rev. 1955, 99, 559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXotFOruw%3D%3D&md5=d559ce8fa5395566095da8427c175916CAS |

[13]  P. Caravan, J. J. Ellison, T. J. McMurry, R. B. Lauffer, Chem. Rev. 1999, 99, 2293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt12rsrg%3D&md5=b63898f1db28f4f27cbb35b44587389aCAS | 11749483PubMed |

[14]  M. P. Lowe, Aust. J. Chem. 2002, 55, 551.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslKntL8%3D&md5=5e8c1dedc3906e25e054fc64fdbdb665CAS |

[15]  T. J. Meade, A. K. Taylor, S. R. Bull, Curr. Opin. Neurobiol. 2003, 13, 597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVeqs70%3D&md5=220bd84a87e7a1c563418418dff39471CAS | 14630224PubMed |

[16]  H. Kato, Y. Kanazawa, M. Okumura, A. Taninaka, T. Yokawa, H. Shinohara, J. Am. Chem. Soc. 2003, 125, 4391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2lsLw%3D&md5=94b2401c35cfb119a74f64bc5cc1027cCAS | 12670265PubMed |

[17]  B. Sitharaman, L. J. Wilson, J. Biomed. Nanotechnol. 2007, 3, 342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCgsw%3D%3D&md5=4d27747132cd641b657e2370a4c5513bCAS |

[18]  P. Caravan, Chem. Soc. Rev. 2006, 35, 512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFOitLo%3D&md5=c6ce5a9b36c80b945125331edb72e81bCAS | 16729145PubMed |

[19]  H. B. Na, T. Hyeon, J. Mater. Chem. 2009, 19, 6233.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  A. J. L. Villaraza, A. Bumb, M. W. Brechbiel, Chem. Rev. 2010, 110, 2921.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1amtA%3D%3D&md5=347d8a80727478adc53f1271259793aaCAS | 20067234PubMed |

[21]  V. Jacques, J. F. Desreux, Top. Curr. Chem. 2002, 221, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGrur4%3D&md5=e29b15733171fc913d7592688a3c3072CAS |

[22]  T. Grobner, Nephrol. Dial. Transplant. 2006, 21, 1104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVOntb8%3D&md5=32c768631660d85429ef8bd11163b4b1CAS | 16431890PubMed |

[23]  D. R. Broome, M. S. Girguis, P. W. Baron, A. C. Cottrell, I. Kjellin, G. A. Kirk, Am. J. Roentgenol. 2007, 188, 586.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  P. Sharma, S. C. Brown, G. Walter, S. Santra, E. Scott, H. Ichikawa, Y. Fukumori, B. M. Moudgil, Adv. Powder Technol 2007, 18, 663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlKjsr0%3D&md5=b57053b2b31ad73eb997d010c6029b6aCAS |

[25]  D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVOitQ%3D%3D&md5=9eb86d71c0bcc0db34f5fc29310bef09CAS | 9438845PubMed |

[26]  M. Vallet-Regi, A. Rámila, R. P. del Real, J. Pérez-Pariente, Chem. Mater. 2001, 13, 308.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptV2rtLs%3D&md5=6f3a6d9788963545fd44fcbf68953c05CAS |

[27]  L. Wang, W. J. Zhao, W. H. Tan, Nano Res. 2008, 1, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVymtLzL&md5=62eae234746f7e62a1dcb076f71213feCAS |

[28]  Y. S. Lin, Y. Hung, J. K. Su, R. Lee, C. Chang, M. L. Lin, C. Y. Mou, J. Phys. Chem. B 2004, 108, 15608.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlWrt70%3D&md5=a0f95e21987022d7caabbda9760f3351CAS |

[29]  G. Liu, C. E. Conn, C. J. Drummond, J. Phys. Chem. B 2009, 113, 15949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSgtLnL&md5=9901e49492b5776ea549eb7f314cd641CAS | 19904961PubMed |

[30]  Q. Cai, Z. S. Luo, W. Q. Pang, Y. W. Fan, X. H. Chen, F. Z. Cui, Chem. Mater. 2001, 13, 258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht12muw%3D%3D&md5=3fba2e1e4c657db5748d327df6a5da1bCAS |

[31]  W. W. Lukens, P. Schmidt-Winkel, D. Y. Zhao, J. L. Feng, G. D. Stucky, Langmuir 1999, 15, 5403.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFGhs70%3D&md5=322c61c88fd303cd546d7aca162bd400CAS |

[32]  A. Derome, Modern NMR techniques for chemistry research 1987 (Pergamon Press: Oxford).

[33]  A. Berggren, A. E. C. Palmqvist, K. Holmberg, Soft Matter 2005, 1, 219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslOisbs%3D&md5=421fd6b1fe3930382c840b094112600dCAS |

[34]  J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFeltrc%3D&md5=4bbae6574f552c6f59ae608402b2721cCAS |

[35]  M. R. Hill, S. J. Pas, S. T. Mudie, D. F. Kennedy, A. J. Hill, J. Mater. Chem. 2009, 19, 2215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslyjsLw%3D&md5=d9b017ded7f2145455740f68addef682CAS |

[36]  C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing 1990 (Academic Press: San Diego).

[37]  M. Selvaraj, B. H. Kim, T. G. Lee, Chem. Lett. 2005, 34, 1290.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGmu7fP&md5=cee0fcdbeef174df0a508226499a0a86CAS |

[38]  X. G. Zhao, J. L. Shi, B. Hu, L. X. Zhang, L. Z. Hua, J. Mater. Chem. 2003, 13, 399.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1arug%3D%3D&md5=ea959ebc46b4b194abb7596588a9ed5eCAS |

[39]  J. M. Berquier, L. Teyssedre, C. Jacquiod, J. Sol-Gel Sci. Technol. 1998, 13, 739.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  E. Rodríguez-Castellón, A. Jiménez-López, P. Maireles-Torres, D. J. Jones, J. Rozière, M. Trombetta, G. Busca, M. Lenarda, L. Storaro, J. Solid State Chem. 2003, 175, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  A. Y. Stakheev, E. S. Shpiro, J. Apijok, J. Phys. Chem. 1993, 97, 5668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWrsr8%3D&md5=2730148852eff59797917e811734d870CAS |

[42]  S. S. Kim, W. Zhang, T. J. Pinnavaia, Science 1998, 282, 1302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsFeiu7k%3D&md5=c89cf53fe391784fa9f1348b887f66abCAS | 9812891PubMed |

[43]  J. Plevert, T. Okubo, Y. Wada, M. O’Keeffe, T. Tatsumi, Chem. Commun. 2001, 20, 2112.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  W. Yin, M. Zhang, J. Alloy. Comp. 2003, 360, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Cktrg%3D&md5=02c21cacb613600910cf4e066fde3494CAS |

[45]  T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin, Nature 1999, 402, 867.
         | 1:CAS:528:DC%2BD3cXitFSgtg%3D%3D&md5=d4f7262d32932ccb845f31c4200fa7f9CAS |

[46]  Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994, 368, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVOrsLo%3D&md5=d68ddecdb75743f2904d970bd05c09c0CAS |

[47]  Z. P. Xu, N. D. Kurniawan, P. F. Bartlett, G. Q. Lu, Chemistry 2007, 13, 2824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVahsb4%3D&md5=6b93c0446c3e4cb7640ddd2ddf5cabb2CAS | 17186555PubMed |

[48]  R. A. Brooks, F. Moiny, P. Gillis, Magn. Reson. Med. 2001, 45, 1014.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlyhtb8%3D&md5=4aa82b069a0608f5513ff1e4b57e27fcCAS | 11378879PubMed |

[49]  M. J. Gueron, J. Magn. Reson. 1975, 19, 58.
         | 1:CAS:528:DyaE2MXlvVGru7o%3D&md5=18cec5d8d26a5d1e1194354e83051cb6CAS |

[50]  G. Z. Liu, C. E. Conn, L. J. Waddington, S. T. Mudie, C. J. Drummond, Langmuir 2010, 26, 2383.
         | Crossref | GoogleScholarGoogle Scholar | 19852474PubMed |

[51]  M. J. Moghaddam, L. de Campo, L. J. Waddington, C. J. Drummond, Soft Matter 2010, 6, 5915.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVaqtrvK&md5=3fe0484fc62cfca21b5bc992cac5c000CAS |

[52]  C. Platas-Iglesias, L. Vander Elst, W. Zhou, R. N. Muller, C. Geraldes, T. Maschmeyer, J. A. Peters, Chemistry 2002, 8, 5121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Khur8%3D&md5=9376a5d9d4e4b78d72aabc07c2e85ba7CAS | 12613030PubMed |